{"title":"Transporting survival of an HIV clinical trial to the external target populations.","authors":"Dasom Lee, Chenyin Gao, Sujit Ghosh, Shu Yang","doi":"10.1080/10543406.2024.2330216","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the heterogeneity of the randomized controlled trial (RCT) and external target populations, the estimated treatment effect from the RCT is not directly applicable to the target population. For example, the patient characteristics of the ACTG 175 HIV trial are significantly different from that of the three external target populations of interest: US early-stage HIV patients, Thailand HIV patients, and southern Ethiopia HIV patients. This paper considers several methods to transport the treatment effect from the ACTG 175 HIV trial to the target populations beyond the trial population. Most transport methods focus on continuous and binary outcomes; on the contrary, we derive and discuss several transport methods for survival outcomes: an outcome regression method based on a Cox proportional hazard (PH) model, an inverse probability weighting method based on the models for treatment assignment, sampling score, and censoring, and a doubly robust method that combines both methods, called the augmented calibration weighting (ACW) method. However, as the PH assumption was found to be incorrect for the ACTG 175 trial, the methods that depend on the PH assumption may lead to the biased quantification of the treatment effect. To account for the violation of the PH assumption, we extend the ACW method with the linear spline-based hazard regression model that does not require the PH assumption. Applying the aforementioned methods for transportability, we explore the effect of PH assumption, or the violation thereof, on transporting the survival results from the ACTG 175 trial to various external populations.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"922-943"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2330216","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the heterogeneity of the randomized controlled trial (RCT) and external target populations, the estimated treatment effect from the RCT is not directly applicable to the target population. For example, the patient characteristics of the ACTG 175 HIV trial are significantly different from that of the three external target populations of interest: US early-stage HIV patients, Thailand HIV patients, and southern Ethiopia HIV patients. This paper considers several methods to transport the treatment effect from the ACTG 175 HIV trial to the target populations beyond the trial population. Most transport methods focus on continuous and binary outcomes; on the contrary, we derive and discuss several transport methods for survival outcomes: an outcome regression method based on a Cox proportional hazard (PH) model, an inverse probability weighting method based on the models for treatment assignment, sampling score, and censoring, and a doubly robust method that combines both methods, called the augmented calibration weighting (ACW) method. However, as the PH assumption was found to be incorrect for the ACTG 175 trial, the methods that depend on the PH assumption may lead to the biased quantification of the treatment effect. To account for the violation of the PH assumption, we extend the ACW method with the linear spline-based hazard regression model that does not require the PH assumption. Applying the aforementioned methods for transportability, we explore the effect of PH assumption, or the violation thereof, on transporting the survival results from the ACTG 175 trial to various external populations.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.