Predictive biomarker discovery in cancer using a unique AI model based on set theory

Anthoula Lazaris , Migmar Tsamchoe , Susan Kaplan , Peter Metrakos , Nathan Hayes
{"title":"Predictive biomarker discovery in cancer using a unique AI model based on set theory","authors":"Anthoula Lazaris ,&nbsp;Migmar Tsamchoe ,&nbsp;Susan Kaplan ,&nbsp;Peter Metrakos ,&nbsp;Nathan Hayes","doi":"10.1016/j.imu.2024.101481","DOIUrl":null,"url":null,"abstract":"<div><p>The current study applies a new artificial intelligence (AI) method, ALiX, which is based on interval arithmetic, to analyze and interpret biological data for a clinical problem: identification of biomarkers for cancer diagnosis. The key unique and important feature of this study is that ALiX provides an explanation to our clinical hypothesis in the form of a list of ranked protein biomarkers that identifies which biomarkers are the most significant drivers of the predicted outcome, a capability that is not currently available in other AI methods. Based on the significant drivers, this study identifies a machine learning model and solution for stratifying cancer patients into subtypes that will predict response to treatment.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"46 ","pages":"Article 101481"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000376/pdfft?md5=326258b16e753fc14ca4736843412893&pid=1-s2.0-S2352914824000376-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The current study applies a new artificial intelligence (AI) method, ALiX, which is based on interval arithmetic, to analyze and interpret biological data for a clinical problem: identification of biomarkers for cancer diagnosis. The key unique and important feature of this study is that ALiX provides an explanation to our clinical hypothesis in the form of a list of ranked protein biomarkers that identifies which biomarkers are the most significant drivers of the predicted outcome, a capability that is not currently available in other AI methods. Based on the significant drivers, this study identifies a machine learning model and solution for stratifying cancer patients into subtypes that will predict response to treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于集合论的独特人工智能模型发现癌症中的预测性生物标记物
目前的研究应用了一种新的人工智能(AI)方法 ALiX,该方法基于区间运算,用于分析和解释临床问题中的生物数据:癌症诊断生物标志物的鉴定。这项研究独特而重要的特点是,ALiX 以蛋白质生物标志物排序列表的形式为我们的临床假设提供解释,确定哪些生物标志物是预测结果的最重要驱动因素,这是目前其他人工智能方法所不具备的能力。根据这些重要的驱动因素,本研究确定了一种机器学习模型和解决方案,用于将癌症患者分层为亚型,从而预测对治疗的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
期刊最新文献
Usability and accessibility in mHealth stroke apps: An empirical assessment Spatiotemporal chest wall movement analysis using depth sensor imaging for detecting respiratory asynchrony Regression and classification of Windkessel parameters from non-invasive cardiovascular quantities using a fully connected neural network Patient2Trial: From patient to participant in clinical trials using large language models Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1