Hierarchical Convolutional Neural Network with Knowledge Complementation for Long-Tailed Classification

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Knowledge Discovery from Data Pub Date : 2024-03-22 DOI:10.1145/3653717
Hong Zhao, Zhengyu Li, Wenwei He, Yan Zhao
{"title":"Hierarchical Convolutional Neural Network with Knowledge Complementation for Long-Tailed Classification","authors":"Hong Zhao, Zhengyu Li, Wenwei He, Yan Zhao","doi":"10.1145/3653717","DOIUrl":null,"url":null,"abstract":"<p>Existing methods based on transfer learning leverage auxiliary information to help tail generalization and improve the performance of the tail classes. However, they cannot fully exploit the relationships between auxiliary information and tail classes and bring irrelevant knowledge to the tail classes. To solve this problem, we propose a hierarchical CNN with knowledge complementation, which regards hierarchical relationships as auxiliary information and transfers relevant knowledge to tail classes. First, we integrate semantics and clustering relationships as hierarchical knowledge into the CNN to guide feature learning. Then, we design a complementary strategy to jointly exploit the two types of knowledge, where semantic knowledge acts as a prior dependence and clustering knowledge reduces the negative information caused by excessive semantic dependence (i.e., semantic gaps). In this way, the CNN facilitates the utilization of the two complementary hierarchical relationships and transfers useful knowledge to tail data to improve long-tailed classification accuracy. Experimental results on public benchmarks show that the proposed model outperforms existing methods. In particular, our model improves accuracy by 3.46% compared with the second-best method on the long-tailed tieredImageNet dataset.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"131 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653717","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Existing methods based on transfer learning leverage auxiliary information to help tail generalization and improve the performance of the tail classes. However, they cannot fully exploit the relationships between auxiliary information and tail classes and bring irrelevant knowledge to the tail classes. To solve this problem, we propose a hierarchical CNN with knowledge complementation, which regards hierarchical relationships as auxiliary information and transfers relevant knowledge to tail classes. First, we integrate semantics and clustering relationships as hierarchical knowledge into the CNN to guide feature learning. Then, we design a complementary strategy to jointly exploit the two types of knowledge, where semantic knowledge acts as a prior dependence and clustering knowledge reduces the negative information caused by excessive semantic dependence (i.e., semantic gaps). In this way, the CNN facilitates the utilization of the two complementary hierarchical relationships and transfers useful knowledge to tail data to improve long-tailed classification accuracy. Experimental results on public benchmarks show that the proposed model outperforms existing methods. In particular, our model improves accuracy by 3.46% compared with the second-best method on the long-tailed tieredImageNet dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于长尾分类的具有知识补充功能的分层卷积神经网络
现有的基于迁移学习的方法利用辅助信息来帮助尾类泛化,提高尾类的性能。但是,这些方法无法充分利用辅助信息与尾类之间的关系,从而给尾类带来了不相关的知识。为了解决这个问题,我们提出了一种具有知识互补性的分层 CNN,它将分层关系视为辅助信息,并将相关知识转移到尾类。首先,我们将语义和聚类关系作为层次知识整合到 CNN 中,以指导特征学习。然后,我们设计了一种互补策略来共同利用这两类知识,其中语义知识充当先验依赖,而聚类知识则减少过度语义依赖(即语义空白)所导致的负面信息。这样,CNN 就能促进两种互补层次关系的利用,并将有用的知识转移到尾部数据中,从而提高长尾分类的准确性。在公共基准上的实验结果表明,所提出的模型优于现有方法。特别是在长尾分层图像网络数据集上,与排名第二的方法相比,我们的模型提高了 3.46% 的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Knowledge Discovery from Data
ACM Transactions on Knowledge Discovery from Data COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.70
自引率
5.60%
发文量
172
审稿时长
3 months
期刊介绍: TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
期刊最新文献
Structural properties on scale-free tree network with an ultra-large diameter Learning Individual Treatment Effects under Heterogeneous Interference in Networks Deconfounding User Preference in Recommendation Systems through Implicit and Explicit Feedback Interdisciplinary Fairness in Imbalanced Research Proposal Topic Inference: A Hierarchical Transformer-based Method with Selective Interpolation A Compact Vulnerability Knowledge Graph for Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1