Seiji Kameno, Yuichi Harikane, Satoko Sawada-Satoh, Tsuyoshi Sawada, Toshiki Saito, Kouichiro Nakanishi, Elizabeth Humphreys, C M Violette Impellizzeri
{"title":"Sub-parsec-scale jet-driven water maser with possible gravitational acceleration in the radio galaxy NGC 1052","authors":"Seiji Kameno, Yuichi Harikane, Satoko Sawada-Satoh, Tsuyoshi Sawada, Toshiki Saito, Kouichiro Nakanishi, Elizabeth Humphreys, C M Violette Impellizzeri","doi":"10.1093/pasj/psae015","DOIUrl":null,"url":null,"abstract":"We report sub-parsec-scale observations of the 321 GHz H2O emission line in the radio galaxy NGC 1052. The H2O line emitter size is constrained in <0.6 mas distributed on the continuum core component. The brightness temperature exceeding 106 K and the intensity variation indicate certain evidence for maser emission. The maser spectrum consists of redshifted and blueshifted velocity components spanning ∼400 km s−1, separated by a local minimum around the systemic velocity of the galaxy. The spatial distribution of maser components shows a velocity gradient along the jet direction, implying that the population-inverted gas is driven by the jets interacting with the molecular torus. We identified a significant change of the maser spectra between two sessions separated by 14 days. The maser profile showed a radial velocity drift of 127 ± 13 km s−1 yr−1 implying inward gravitational acceleration at 5000 Schwarzschild radii. The results demonstrate the feasibility of future very long baseline interferometry observations to resolve the jet–torus interacting region.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":"121 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/pasj/psae015","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We report sub-parsec-scale observations of the 321 GHz H2O emission line in the radio galaxy NGC 1052. The H2O line emitter size is constrained in <0.6 mas distributed on the continuum core component. The brightness temperature exceeding 106 K and the intensity variation indicate certain evidence for maser emission. The maser spectrum consists of redshifted and blueshifted velocity components spanning ∼400 km s−1, separated by a local minimum around the systemic velocity of the galaxy. The spatial distribution of maser components shows a velocity gradient along the jet direction, implying that the population-inverted gas is driven by the jets interacting with the molecular torus. We identified a significant change of the maser spectra between two sessions separated by 14 days. The maser profile showed a radial velocity drift of 127 ± 13 km s−1 yr−1 implying inward gravitational acceleration at 5000 Schwarzschild radii. The results demonstrate the feasibility of future very long baseline interferometry observations to resolve the jet–torus interacting region.
期刊介绍:
Publications of the Astronomical Society of Japan (PASJ) publishes the results of original research in all aspects of astronomy, astrophysics, and fields closely related to them.