Isolation and Functional Analysis of Na+/H+ Antiporter Gene (LcNHX1) from Leymus chinensis

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-03-22 DOI:10.1007/s11105-024-01446-5
Chuanbo Sun, Chuang Zhang, Yuejia Yin, Ying Wang, Shujing Mu, Qing Liu, Ziyu Wang, Yang Liu, Chunxiao Zhang, Xiangguo Liu, Yan Zhang, Jia Guo
{"title":"Isolation and Functional Analysis of Na+/H+ Antiporter Gene (LcNHX1) from Leymus chinensis","authors":"Chuanbo Sun, Chuang Zhang, Yuejia Yin, Ying Wang, Shujing Mu, Qing Liu, Ziyu Wang, Yang Liu, Chunxiao Zhang, Xiangguo Liu, Yan Zhang, Jia Guo","doi":"10.1007/s11105-024-01446-5","DOIUrl":null,"url":null,"abstract":"<p>Saline-alkali stress has adverse effects on plant growth. Some plant Na<sup>+</sup>/H<sup>+</sup> antiporters were reported to be important in salt tolerance. However, it needs to be better understood that Na<sup>+</sup>/H<sup>+</sup> antiporters are involved in plant salt-alkali (NaHCO<sub>3</sub>/Na<sub>2</sub>CO<sub>3</sub>) tolerance. In this study, a Na<sup>+</sup>/H<sup>+</sup> antiporter gene <i>LcNHX1</i> (China patent No.200810050629.1) has been cloned from <i>Leymus chinensis.</i> The <i>LcNHX1</i> CDS contains 1614 bp that encodes 537 amino acids<i>.</i> Amino acid and nucleotide sequence similarity, protein topology modelling, conserved functional domains in the protein sequence, and subcellular localization classified <i>LcNHX1</i> as a vacuolar <i>NHX1</i> homolog. Transcription analysis by quantitative RT-PCR indicated that upregulated expression of <i>LcNHX1</i> could be induced by NaCl, NaHCO<sub>3</sub>, NaCl + NaHCO<sub>3</sub>, and PGE in <i>L. chinensis</i> seedlings. The expression of <i>LcNHX1</i> partially complements the salt-sensitive phenotypes of a <i>Δnhx1</i> yeast strain. In addition, <i>LcNHX1</i> overexpressing enhanced the tolerance to NaHCO<sub>3</sub> stress in the transgenic Arabidopsis. Taken together, these results indicated that <i>LcNHX1</i> is a potential candidate gene for enhancing plant saline-alkali tolerance.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11105-024-01446-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Saline-alkali stress has adverse effects on plant growth. Some plant Na+/H+ antiporters were reported to be important in salt tolerance. However, it needs to be better understood that Na+/H+ antiporters are involved in plant salt-alkali (NaHCO3/Na2CO3) tolerance. In this study, a Na+/H+ antiporter gene LcNHX1 (China patent No.200810050629.1) has been cloned from Leymus chinensis. The LcNHX1 CDS contains 1614 bp that encodes 537 amino acids. Amino acid and nucleotide sequence similarity, protein topology modelling, conserved functional domains in the protein sequence, and subcellular localization classified LcNHX1 as a vacuolar NHX1 homolog. Transcription analysis by quantitative RT-PCR indicated that upregulated expression of LcNHX1 could be induced by NaCl, NaHCO3, NaCl + NaHCO3, and PGE in L. chinensis seedlings. The expression of LcNHX1 partially complements the salt-sensitive phenotypes of a Δnhx1 yeast strain. In addition, LcNHX1 overexpressing enhanced the tolerance to NaHCO3 stress in the transgenic Arabidopsis. Taken together, these results indicated that LcNHX1 is a potential candidate gene for enhancing plant saline-alkali tolerance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
莱姆斯 chinensis 的 Na+/H+ 反转运体基因(LcNHX1)的分离与功能分析
盐碱胁迫对植物生长有不利影响。据报道,一些植物的 Na+/H+ 反转运体对耐盐性很重要。然而,Na+/H+拮抗剂是否参与植物耐盐碱(NaHCO3/Na2CO3)还需要进一步了解。本研究从Leymus chinensis中克隆了一个Na+/H+反转运体基因LcNHX1(中国专利号:200810050629.1)。LcNHX1 CDS包含1614 bp,编码537个氨基酸。氨基酸和核苷酸序列相似性、蛋白质拓扑模型、蛋白质序列中的保守功能域以及亚细胞定位将 LcNHX1 定义为空泡 NHX1 同源物。定量 RT-PCR 转录分析表明,NaCl、NaHCO3、NaCl + NaHCO3 和 PGE 均可诱导 LcNHX1 的表达。LcNHX1的表达部分补充了Δnhx1酵母菌株的盐敏感表型。此外,LcNHX1的过表达增强了转基因拟南芥对NaHCO3胁迫的耐受性。综上所述,这些结果表明 LcNHX1 是增强植物耐盐碱能力的潜在候选基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1