ROBUST: 221 bugs in the Robot Operating System

IF 3.5 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Empirical Software Engineering Pub Date : 2024-03-23 DOI:10.1007/s10664-024-10440-0
Christopher S. Timperley, Gijs van der Hoorn, André Santos, Harshavardhan Deshpande, Andrzej Wąsowski
{"title":"ROBUST: 221 bugs in the Robot Operating System","authors":"Christopher S. Timperley, Gijs van der Hoorn, André Santos, Harshavardhan Deshpande, Andrzej Wąsowski","doi":"10.1007/s10664-024-10440-0","DOIUrl":null,"url":null,"abstract":"<p>As robotic systems such as autonomous cars and delivery drones assume greater roles and responsibilities within society, the likelihood and impact of catastrophic software failure within those systems is increased. To aid researchers in the development of new methods to measure and assure the safety and quality of robotics software, we systematically curated a dataset of 221 bugs across 7 popular and diverse software systems implemented via the Robot Operating System (ROS). We produce historically accurate recreations of each of the 221 defective software versions in the form of Docker images, and use a grounded theory approach to examine and categorize their corresponding faults, failures, and fixes. Finally, we reflect on the implications of our findings and outline future research directions for the community.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10664-024-10440-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

As robotic systems such as autonomous cars and delivery drones assume greater roles and responsibilities within society, the likelihood and impact of catastrophic software failure within those systems is increased. To aid researchers in the development of new methods to measure and assure the safety and quality of robotics software, we systematically curated a dataset of 221 bugs across 7 popular and diverse software systems implemented via the Robot Operating System (ROS). We produce historically accurate recreations of each of the 221 defective software versions in the form of Docker images, and use a grounded theory approach to examine and categorize their corresponding faults, failures, and fixes. Finally, we reflect on the implications of our findings and outline future research directions for the community.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ROBUST:机器人操作系统中的 221 个错误
随着自动驾驶汽车和无人机送货等机器人系统在社会中发挥更大的作用和承担更多的责任,这些系统出现灾难性软件故障的可能性和影响也随之增大。为了帮助研究人员开发测量和确保机器人软件安全与质量的新方法,我们系统地整理了通过机器人操作系统(ROS)实施的 7 种流行和多样化软件系统中的 221 个错误数据集。我们以 Docker 镜像的形式制作了这 221 个有缺陷软件版本中每个版本的历史精确再现,并使用基础理论方法对其相应的故障、失效和修复进行了检查和分类。最后,我们对研究结果的意义进行了反思,并概述了社区未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Empirical Software Engineering
Empirical Software Engineering 工程技术-计算机:软件工程
CiteScore
8.50
自引率
12.20%
发文量
169
审稿时长
>12 weeks
期刊介绍: Empirical Software Engineering provides a forum for applied software engineering research with a strong empirical component, and a venue for publishing empirical results relevant to both researchers and practitioners. Empirical studies presented here usually involve the collection and analysis of data and experience that can be used to characterize, evaluate and reveal relationships between software development deliverables, practices, and technologies. Over time, it is expected that such empirical results will form a body of knowledge leading to widely accepted and well-formed theories. The journal also offers industrial experience reports detailing the application of software technologies - processes, methods, or tools - and their effectiveness in industrial settings. Empirical Software Engineering promotes the publication of industry-relevant research, to address the significant gap between research and practice.
期刊最新文献
An empirical study on developers’ shared conversations with ChatGPT in GitHub pull requests and issues Quality issues in machine learning software systems An empirical study of token-based micro commits Software product line testing: a systematic literature review Consensus task interaction trace recommender to guide developers’ software navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1