Analysis of Water Vapor Absorption Lines in Modern Spectroscopic Databases in the 16 700–17 000 cm−1 Region

IF 0.9 Q4 OPTICS Atmospheric and Oceanic Optics Pub Date : 2024-03-23 DOI:10.1134/S1024856024010123
L. N. Sinitsa, T. Yu. Chesnokova
{"title":"Analysis of Water Vapor Absorption Lines in Modern Spectroscopic Databases in the 16 700–17 000 cm−1 Region","authors":"L. N. Sinitsa,&nbsp;T. Yu. Chesnokova","doi":"10.1134/S1024856024010123","DOIUrl":null,"url":null,"abstract":"<p>The validation of H<sub>2</sub>O absorption lines parameters in the modern spectroscopic databases such as HITRAN2016, HITRAN2020, GEISA2020, and W2020 is carried out in the visible region 16 700–17 000 cm<sup>−1</sup>. The H<sub>2</sub>O transmission spectra are simulated with the spectroscopic databases and compared with laboratory spectra of pure water vapor and H<sub>2</sub>O–N<sub>2</sub> mixture (<i>P</i> = 1 atm) recorded using a Fourier spectrometer with light-emitting diodes of high luminance. The parameters of 65 H<sub>2</sub>O absorption lines from HITRAN2020 database are corrected on the basis of the measurements. The positions of 32 lines, intensities of 51 lines, and self-broadening coefficients of 10 lines are improved. The ratio of the HITRAN2020 broadening coefficients to the experimental values is close to 1, whereas the air pressure-induced line shift coefficients in the spectroscopic databases are, on average, two times higher than the experimental values, and therefore, our previously obtained experimental values of N<sub>2</sub> pressure-induced line shift coefficients are used to simulate the transmission spectra of the H<sub>2</sub>O–N<sub>2</sub> mixture. The difference of the experimental spectra from the spectra calculated with HITRAN2016, HITRAN2020, GEISA2020, W2020, and corrected HITRAN2020cor is estimated by the root-mean-square deviations RMS = 1.49 × 10<sup>–4</sup>, 1.64 × 10<sup>–4</sup>, 3.96 × 10<sup>–4</sup>, 3.49 × 10<sup>–4</sup>, and 1.26 × 10<sup>–4</sup>, respectively, in the case of pure water vapor and 1.15 × 10<sup>–4</sup>, 1.1 × 10<sup>–4</sup>, 2.23 × 10<sup>–4</sup>, 2.28 × 10<sup>–4</sup>, and 0.86 × 10<sup>–4</sup> in the case of H<sub>2</sub>O–N<sub>2</sub> mixture.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024010123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The validation of H2O absorption lines parameters in the modern spectroscopic databases such as HITRAN2016, HITRAN2020, GEISA2020, and W2020 is carried out in the visible region 16 700–17 000 cm−1. The H2O transmission spectra are simulated with the spectroscopic databases and compared with laboratory spectra of pure water vapor and H2O–N2 mixture (P = 1 atm) recorded using a Fourier spectrometer with light-emitting diodes of high luminance. The parameters of 65 H2O absorption lines from HITRAN2020 database are corrected on the basis of the measurements. The positions of 32 lines, intensities of 51 lines, and self-broadening coefficients of 10 lines are improved. The ratio of the HITRAN2020 broadening coefficients to the experimental values is close to 1, whereas the air pressure-induced line shift coefficients in the spectroscopic databases are, on average, two times higher than the experimental values, and therefore, our previously obtained experimental values of N2 pressure-induced line shift coefficients are used to simulate the transmission spectra of the H2O–N2 mixture. The difference of the experimental spectra from the spectra calculated with HITRAN2016, HITRAN2020, GEISA2020, W2020, and corrected HITRAN2020cor is estimated by the root-mean-square deviations RMS = 1.49 × 10–4, 1.64 × 10–4, 3.96 × 10–4, 3.49 × 10–4, and 1.26 × 10–4, respectively, in the case of pure water vapor and 1.15 × 10–4, 1.1 × 10–4, 2.23 × 10–4, 2.28 × 10–4, and 0.86 × 10–4 in the case of H2O–N2 mixture.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现代光谱数据库中 16 700-17 000 cm-1 区域的水蒸气吸收线分析
摘要 在可见光区域 16 700-17 000 厘米-1,对 HITRAN2016、HITRAN2020、GEISA2020 和 W2020 等现代光谱数据库中的 H2O 吸收线参数进行了验证。利用光谱数据库模拟了 H2O 透射光谱,并将其与使用高亮度发光二极管傅立叶光谱仪记录的纯水蒸气和 H2O-N2 混合物(P = 1 atm)的实验室光谱进行了比较。根据测量结果对 HITRAN2020 数据库中 65 条 H2O 吸收线的参数进行了校正。改进了 32 条吸收线的位置、51 条吸收线的强度和 10 条吸收线的自展宽系数。HITRAN2020 的展宽系数与实验值的比值接近 1,而光谱数据库中的气压诱导线移系数平均比实验值高出两倍,因此,我们使用之前获得的 N2 压力诱导线移系数实验值来模拟 H2O-N2 混合物的透射光谱。实验光谱与用 HITRAN2016、HITRAN2020、GEISA2020、W2020 和校正后的 HITRAN2020cor 计算的光谱之间的差异通过均方根偏差 RMS = 1.49 × 10-4、1.64 × 10-4、3.96 × 10-4、3.49 × 10-4、1.26 × 10-4;纯水蒸气的均方根偏差分别为 1.15 × 10-4、1.1 × 10-4、2.23 × 10-4、2.28 × 10-4、0.86 × 10-4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
期刊最新文献
The Superresonance: The Discovery That Was Not Done More Than One Hundred Years Ago Spatial Distribution of Potential Sources of Carbonaceous Aerosols in Central Siberia The Effect of Electronic Halos on the Scattering Properties of Solid Particles in the Microwave Range Aerosol Sounding of the Troposphere and Stratosphere by Lidar and Aerological Technologies Optical and Geometrical Characteristics of High-Level Clouds from the 2009–2023 Data on Laser Polarization Sensing in Tomsk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1