Non-Line-of-Sight Optical Communication: Field, Laboratory, and Numerical Experiments in Russia in 2012–2022

IF 0.9 Q4 OPTICS Atmospheric and Oceanic Optics Pub Date : 2024-03-23 DOI:10.1134/S1024856024010044
V. V. Belov, M. V. Tarasenkov, E. S. Poznakharev, A. V. Fedosov, V. N. Abramochkin
{"title":"Non-Line-of-Sight Optical Communication: Field, Laboratory, and Numerical Experiments in Russia in 2012–2022","authors":"V. V. Belov,&nbsp;M. V. Tarasenkov,&nbsp;E. S. Poznakharev,&nbsp;A. V. Fedosov,&nbsp;V. N. Abramochkin","doi":"10.1134/S1024856024010044","DOIUrl":null,"url":null,"abstract":"<p>Experimental and theoretical studies performed in Russia in 2012–2022 on non-line-of-sight optical communication in air and water media are reviewed. The main results of field, laboratory, and numerical experiments in the IR, visible, and UV wavelength ranges are given. In the laboratory experiments, a water-glycerin and atmospheric air mixture was used as scattering media. In the field experiments, optical communication was implemented in the near-surface air layer, as well as in artificial and natural water reservoirs (including through ice in winter). The investigations were performed for coplanar and noncoplanar schemes of communication channels.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024010044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental and theoretical studies performed in Russia in 2012–2022 on non-line-of-sight optical communication in air and water media are reviewed. The main results of field, laboratory, and numerical experiments in the IR, visible, and UV wavelength ranges are given. In the laboratory experiments, a water-glycerin and atmospheric air mixture was used as scattering media. In the field experiments, optical communication was implemented in the near-surface air layer, as well as in artificial and natural water reservoirs (including through ice in winter). The investigations were performed for coplanar and noncoplanar schemes of communication channels.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非视距光通信:2012-2022 年俄罗斯的现场、实验室和数值实验
摘要 回顾了 2012-2022 年俄罗斯在空气和水介质中进行的非视距光通信实验和理论研究。文中给出了在红外、可见光和紫外波长范围内进行的现场、实验室和数值实验的主要结果。在实验室实验中,水-甘油和大气空气混合物被用作散射介质。在现场实验中,在近地面空气层以及人工水库和天然水库(包括冬季通过冰层)中实施了光通信。对通信通道的共面和非共面方案进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
期刊最新文献
The Superresonance: The Discovery That Was Not Done More Than One Hundred Years Ago Spatial Distribution of Potential Sources of Carbonaceous Aerosols in Central Siberia The Effect of Electronic Halos on the Scattering Properties of Solid Particles in the Microwave Range Aerosol Sounding of the Troposphere and Stratosphere by Lidar and Aerological Technologies Optical and Geometrical Characteristics of High-Level Clouds from the 2009–2023 Data on Laser Polarization Sensing in Tomsk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1