{"title":"Bio-based templates for generating hierarchical zeolites: an overview for greener synthesis pathway","authors":"Arxhel S. F. Nanda, Grandprix T. M. Kadja","doi":"10.1007/s10934-024-01586-9","DOIUrl":null,"url":null,"abstract":"<div><p>In general, hierarchical zeolite synthesis will produce waste, which will cause many problems for environmental pollution. The waste that comes from the synthesis of zeolites, such as the use of hazardous chemicals from the use of many solvents, additional templates, silica sources used, and other precursors that are not environmentally friendly. One solution to the problem is to use bio-based templates. The advantage of using this bio-based template is that it is environmentally friendly, reduces dependence on hazardous chemicals, and supports sustainability for bio-based templates such as carbohydrates, chitin, and others. The use of the previously mentioned templates in zeolite synthesis can produce hierarchical pores, high crystallinity, and catalytic properties that are not inferior to conventional zeolites obtained, and more cost-effective. The efforts are expected to fulfill the principles of green chemistry, which prioritizes the environment to provide better prospects for the synthesis of hierarchical zeolites in the future.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1155 - 1173"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01586-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In general, hierarchical zeolite synthesis will produce waste, which will cause many problems for environmental pollution. The waste that comes from the synthesis of zeolites, such as the use of hazardous chemicals from the use of many solvents, additional templates, silica sources used, and other precursors that are not environmentally friendly. One solution to the problem is to use bio-based templates. The advantage of using this bio-based template is that it is environmentally friendly, reduces dependence on hazardous chemicals, and supports sustainability for bio-based templates such as carbohydrates, chitin, and others. The use of the previously mentioned templates in zeolite synthesis can produce hierarchical pores, high crystallinity, and catalytic properties that are not inferior to conventional zeolites obtained, and more cost-effective. The efforts are expected to fulfill the principles of green chemistry, which prioritizes the environment to provide better prospects for the synthesis of hierarchical zeolites in the future.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.