Julien Mouli-Castillo, Jackie E. Kendrick, Alexander Lightbody, Andrew Fraser-Harris, Katriona Edlmann, Christopher Ian McDermott, Zoe Kai Shipton
{"title":"Cyclical hydraulic pressure pulses reduce breakdown pressure and initiate staged fracture growth in PMMA","authors":"Julien Mouli-Castillo, Jackie E. Kendrick, Alexander Lightbody, Andrew Fraser-Harris, Katriona Edlmann, Christopher Ian McDermott, Zoe Kai Shipton","doi":"10.1007/s40948-024-00739-z","DOIUrl":null,"url":null,"abstract":"<p>Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the potential benefits of applying cyclical hydraulic pressure pulses to enhance the near-well connectivity through hydraulic fracturing treatment. Under unconfined and confined stresses, equivalent to a depth of up to 530 m, we use dynamic high-resolution strain measurements from fibre optic cables, complemented by optical recordings of fracture development, and investigate the impact of cyclical hydraulic pressure pulses on the number of cycles to failure in Polymethylmethacrylate at different temperatures. Our results indicate that a significant reduction in breakdown pressure can be achieved. This suggests that cyclic pressure pulses could require lower power consumption, as well as reduced fluid injection volumes and injection rates during stimulation, which could minimise the occurrence of the largest induced seismic events. Our results show that fractures develop in stages under repeated pressure cycles. This suggests that Cyclic Fluid Pressurization Systems could be effective in managing damage build-up and increasing permeability. This is achieved by forming numerous small fractures and reducing the size and occurrence of large fracturing events that produce large seismic events. Our results offer new insight into cyclical hydraulic fracturing treatments and provide a unique data set for benchmarking numerical models of fracture initiation and propagation.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"42 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00739-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the potential benefits of applying cyclical hydraulic pressure pulses to enhance the near-well connectivity through hydraulic fracturing treatment. Under unconfined and confined stresses, equivalent to a depth of up to 530 m, we use dynamic high-resolution strain measurements from fibre optic cables, complemented by optical recordings of fracture development, and investigate the impact of cyclical hydraulic pressure pulses on the number of cycles to failure in Polymethylmethacrylate at different temperatures. Our results indicate that a significant reduction in breakdown pressure can be achieved. This suggests that cyclic pressure pulses could require lower power consumption, as well as reduced fluid injection volumes and injection rates during stimulation, which could minimise the occurrence of the largest induced seismic events. Our results show that fractures develop in stages under repeated pressure cycles. This suggests that Cyclic Fluid Pressurization Systems could be effective in managing damage build-up and increasing permeability. This is achieved by forming numerous small fractures and reducing the size and occurrence of large fracturing events that produce large seismic events. Our results offer new insight into cyclical hydraulic fracturing treatments and provide a unique data set for benchmarking numerical models of fracture initiation and propagation.
期刊介绍:
This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.