R. Khorrami, M. M. Tochaee, M. Payan, R. Jamshidi Chenari
{"title":"Deformation characteristics and creep behaviour of rigid particulates-EPS beads composites","authors":"R. Khorrami, M. M. Tochaee, M. Payan, R. Jamshidi Chenari","doi":"10.1680/jgein.23.00145","DOIUrl":null,"url":null,"abstract":"The compression behaviour of the mixture of glass beads (representing rigid particles) and EPS beads (representing deformable particles) during the loading-unloading process is systematically examined through performing two sets of large-size oedometer experiments, including incremental step-by-step and one-step loading scenarios. At each step during the loading-unloading cycle, the void ratio (<i>e</i>) and the at-rest coefficient of lateral earth pressure (<i>K</i><sub>0</sub>) are measured for pure rigid samples and rigid-soft particle mixtures. To consider the creep effect, the overburden pressure at the final loading step is maintained on the sample for 24 hours prior to unloading. The results show that at a given overburden pressure, with the addition of soft particles to the pure rigid aggregates, the values of <i>e</i> and <i>K</i><sub>0</sub> decrease. Additionally, for both pure rigid samples and rigid-soft particle mixtures, with increasing the overburden pressure, <i>e</i> decreases whereas <i>K</i><sub>0</sub> augments. Moreover, due to the creep behaviour during the constant loading step, <i>K</i><sub>0</sub> decreases over time for both samples; the phenomenon which is observed to be more pronounced for pure rigid aggregates compared to rigid-soft particle mixtures. Finally, a well-established creep model is used to simulate the creep behaviour of pure rigid samples and rigid-soft particle composites.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":"307 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.23.00145","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The compression behaviour of the mixture of glass beads (representing rigid particles) and EPS beads (representing deformable particles) during the loading-unloading process is systematically examined through performing two sets of large-size oedometer experiments, including incremental step-by-step and one-step loading scenarios. At each step during the loading-unloading cycle, the void ratio (e) and the at-rest coefficient of lateral earth pressure (K0) are measured for pure rigid samples and rigid-soft particle mixtures. To consider the creep effect, the overburden pressure at the final loading step is maintained on the sample for 24 hours prior to unloading. The results show that at a given overburden pressure, with the addition of soft particles to the pure rigid aggregates, the values of e and K0 decrease. Additionally, for both pure rigid samples and rigid-soft particle mixtures, with increasing the overburden pressure, e decreases whereas K0 augments. Moreover, due to the creep behaviour during the constant loading step, K0 decreases over time for both samples; the phenomenon which is observed to be more pronounced for pure rigid aggregates compared to rigid-soft particle mixtures. Finally, a well-established creep model is used to simulate the creep behaviour of pure rigid samples and rigid-soft particle composites.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.