Dmitry Gribanov, Ivan Shumilov, Dmitry Malyshev, Nikolai Zolotykh
{"title":"Faster algorithms for sparse ILP and hypergraph multi-packing/multi-cover problems","authors":"Dmitry Gribanov, Ivan Shumilov, Dmitry Malyshev, Nikolai Zolotykh","doi":"10.1007/s10898-024-01379-z","DOIUrl":null,"url":null,"abstract":"<p>In our paper, we consider the following general problems: check feasibility, count the number of feasible solutions, find an optimal solution, and count the number of optimal solutions in <span>\\({{\\,\\mathrm{\\mathcal {P}}\\,}}\\cap {{\\,\\mathrm{\\mathbb {Z}}\\,}}^n\\)</span>, assuming that <span>\\({{\\,\\mathrm{\\mathcal {P}}\\,}}\\)</span> is a polyhedron, defined by systems <span>\\(A x \\le b\\)</span> or <span>\\(Ax = b,\\, x \\ge 0\\)</span> with a sparse matrix <i>A</i>. We develop algorithms for these problems that outperform state-of-the-art ILP and counting algorithms on sparse instances with bounded elements in terms of the computational complexity. Assuming that the matrix <i>A</i> has bounded elements, our complexity bounds have the form <span>\\(s^{O(n)}\\)</span>, where <i>s</i> is the minimum between numbers of non-zeroes in columns and rows of <i>A</i>, respectively. For <span>\\(s = o\\bigl (\\log n \\bigr )\\)</span>, this bound outperforms the state-of-the-art ILP feasibility complexity bound <span>\\((\\log n)^{O(n)}\\)</span>, due to Reis & Rothvoss (in: 2023 IEEE 64th Annual symposium on foundations of computer science (FOCS), IEEE, pp. 974–988). For <span>\\(s = \\phi ^{o(\\log n)}\\)</span>, where <span>\\(\\phi \\)</span> denotes the input bit-encoding length, it outperforms the state-of-the-art ILP counting complexity bound <span>\\(\\phi ^{O(n \\log n)}\\)</span>, due to Barvinok et al. (in: Proceedings of 1993 IEEE 34th annual foundations of computer science, pp. 566–572, https://doi.org/10.1109/SFCS.1993.366830, 1993), Dyer, Kannan (Math Oper Res 22(3):545–549, https://doi.org/10.1287/moor.22.3.545, 1997), Barvinok, Pommersheim (Algebr Combin 38:91–147, 1999), Barvinok (in: European Mathematical Society, ETH-Zentrum, Zurich, 2008). We use known and new methods to develop new exponential algorithms for <i>Edge/Vertex Multi-Packing/Multi-Cover Problems</i> on graphs and hypergraphs. This framework consists of many different problems, such as the <i>Stable Multi-set</i>, <i>Vertex Multi-cover</i>, <i>Dominating Multi-set</i>, <i>Set Multi-cover</i>, <i>Multi-set Multi-cover</i>, and <i>Hypergraph Multi-matching</i> problems, which are natural generalizations of the standard <i>Stable Set</i>, <i>Vertex Cover</i>, <i>Dominating Set</i>, <i>Set Cover</i>, and <i>Maximum Matching</i> problems.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"28 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01379-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In our paper, we consider the following general problems: check feasibility, count the number of feasible solutions, find an optimal solution, and count the number of optimal solutions in \({{\,\mathrm{\mathcal {P}}\,}}\cap {{\,\mathrm{\mathbb {Z}}\,}}^n\), assuming that \({{\,\mathrm{\mathcal {P}}\,}}\) is a polyhedron, defined by systems \(A x \le b\) or \(Ax = b,\, x \ge 0\) with a sparse matrix A. We develop algorithms for these problems that outperform state-of-the-art ILP and counting algorithms on sparse instances with bounded elements in terms of the computational complexity. Assuming that the matrix A has bounded elements, our complexity bounds have the form \(s^{O(n)}\), where s is the minimum between numbers of non-zeroes in columns and rows of A, respectively. For \(s = o\bigl (\log n \bigr )\), this bound outperforms the state-of-the-art ILP feasibility complexity bound \((\log n)^{O(n)}\), due to Reis & Rothvoss (in: 2023 IEEE 64th Annual symposium on foundations of computer science (FOCS), IEEE, pp. 974–988). For \(s = \phi ^{o(\log n)}\), where \(\phi \) denotes the input bit-encoding length, it outperforms the state-of-the-art ILP counting complexity bound \(\phi ^{O(n \log n)}\), due to Barvinok et al. (in: Proceedings of 1993 IEEE 34th annual foundations of computer science, pp. 566–572, https://doi.org/10.1109/SFCS.1993.366830, 1993), Dyer, Kannan (Math Oper Res 22(3):545–549, https://doi.org/10.1287/moor.22.3.545, 1997), Barvinok, Pommersheim (Algebr Combin 38:91–147, 1999), Barvinok (in: European Mathematical Society, ETH-Zentrum, Zurich, 2008). We use known and new methods to develop new exponential algorithms for Edge/Vertex Multi-Packing/Multi-Cover Problems on graphs and hypergraphs. This framework consists of many different problems, such as the Stable Multi-set, Vertex Multi-cover, Dominating Multi-set, Set Multi-cover, Multi-set Multi-cover, and Hypergraph Multi-matching problems, which are natural generalizations of the standard Stable Set, Vertex Cover, Dominating Set, Set Cover, and Maximum Matching problems.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.