{"title":"Interaction solutions of (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation via bilinear method","authors":"Shuting Bai, Xiaojun Yin, Na Cao, Liyang Xu","doi":"10.1142/s0217984924503202","DOIUrl":null,"url":null,"abstract":"<p>Using the bilinear neural network method (BNNM) and the symbolic computation system Mathematica, this paper explains how to find an exact solution for the (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani (KdVSKR) equation. In terms of activation function and weight coefficient, BNNM is a more appealing option for users than traditional symbolic computation methods. It is possible to develop a wide range of solutions and expand the classes of exact solutions by modifying the activation function. The activation function’s versatility allows it to generate a wide range of solutions with several theoretical and practical uses. The analytical solution is obtained by using a double layer type, while the rogue wave solution and mixed solutions are obtained by using a single layer type. The evolution of these waves is then illustrated using various 3D graphs, 2D graphs, and density plots.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"53 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503202","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Using the bilinear neural network method (BNNM) and the symbolic computation system Mathematica, this paper explains how to find an exact solution for the (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani (KdVSKR) equation. In terms of activation function and weight coefficient, BNNM is a more appealing option for users than traditional symbolic computation methods. It is possible to develop a wide range of solutions and expand the classes of exact solutions by modifying the activation function. The activation function’s versatility allows it to generate a wide range of solutions with several theoretical and practical uses. The analytical solution is obtained by using a double layer type, while the rogue wave solution and mixed solutions are obtained by using a single layer type. The evolution of these waves is then illustrated using various 3D graphs, 2D graphs, and density plots.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.