Michael Soreghan , Andrew Cohen , Michael McGlue , Kevin Yeager , Emily Ryan , Alison Johns , Ishmael Kimirei
{"title":"Impacts of anthropogenic sedimentation on shell-bed habitats in Lake Tanganyika, Africa","authors":"Michael Soreghan , Andrew Cohen , Michael McGlue , Kevin Yeager , Emily Ryan , Alison Johns , Ishmael Kimirei","doi":"10.1016/j.jglr.2024.102325","DOIUrl":null,"url":null,"abstract":"<div><p>Lake Tanganyika, in central Africa, contains a diverse and endemic fauna under threat from global climate change, overfishing, and nearshore sediment pollution. Previous studies of sediment pollution focused justifiably on impacts along rocky shorelines where diversity is high, but Lake Tanganyika also contains widespread shelly accumulations (shell beds) unprecedented in the modern East African lakes, but where impacts are less constrained. Here we integrate multiple datasets from three sites along the Tanzanian shoreline to explore how variation in sedimentation rates and sediment quality impacts shell-bed substrate and diversity and abundance of ostracodes and sponges across sites that exhibit varying watershed characteristics. Taphonomic overprinting of the shells are similar over the three sites, suggesting lake-wide processes control their accumulation. However, shell bed distribution and sediment volume and compositions vary. There are also differences in the abundance of studied taxa. Where organic matter is diluted by clastic mud, ostracodes are less abundant and less diverse. Where sediment is pervasive and shell density is low, fewer sponges occur. Using the fallout radionuclide <sup>210</sup>Pb, the two sites with discontinuous shell beds show sedimentation rates at least twice as high as the site where shell beds are more continuous. These differences are likely related to modest differences in watershed morphology, urbanization, and land cover. Our study suggests that modern sediment pollution creates sediment blankets that cover extant shell beds and likely reduce live populations of the snails that contribute to the accumulations. This has important conservation implications as planning must focus on large watersheds where agriculture and urbanization tend to be higher.</p></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"50 3","pages":"Article 102325"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0380133024000571/pdfft?md5=b2da232e52607bbe620947f1f9e8c4ce&pid=1-s2.0-S0380133024000571-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133024000571","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lake Tanganyika, in central Africa, contains a diverse and endemic fauna under threat from global climate change, overfishing, and nearshore sediment pollution. Previous studies of sediment pollution focused justifiably on impacts along rocky shorelines where diversity is high, but Lake Tanganyika also contains widespread shelly accumulations (shell beds) unprecedented in the modern East African lakes, but where impacts are less constrained. Here we integrate multiple datasets from three sites along the Tanzanian shoreline to explore how variation in sedimentation rates and sediment quality impacts shell-bed substrate and diversity and abundance of ostracodes and sponges across sites that exhibit varying watershed characteristics. Taphonomic overprinting of the shells are similar over the three sites, suggesting lake-wide processes control their accumulation. However, shell bed distribution and sediment volume and compositions vary. There are also differences in the abundance of studied taxa. Where organic matter is diluted by clastic mud, ostracodes are less abundant and less diverse. Where sediment is pervasive and shell density is low, fewer sponges occur. Using the fallout radionuclide 210Pb, the two sites with discontinuous shell beds show sedimentation rates at least twice as high as the site where shell beds are more continuous. These differences are likely related to modest differences in watershed morphology, urbanization, and land cover. Our study suggests that modern sediment pollution creates sediment blankets that cover extant shell beds and likely reduce live populations of the snails that contribute to the accumulations. This has important conservation implications as planning must focus on large watersheds where agriculture and urbanization tend to be higher.
期刊介绍:
Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.