Variants of non-symmetric correspondence analysis for nominal and ordinal variables

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY Journal of the Korean Statistical Society Pub Date : 2024-03-23 DOI:10.1007/s42952-023-00253-0
Riya R. Jain, Kirtee K. Kamalja
{"title":"Variants of non-symmetric correspondence analysis for nominal and ordinal variables","authors":"Riya R. Jain, Kirtee K. Kamalja","doi":"10.1007/s42952-023-00253-0","DOIUrl":null,"url":null,"abstract":"<p>Non-symmetric correspondence analysis (NSCA) is a multivariate data analysis technique that has gained increasing attention in recent years. NSCA is an extension of traditional correspondence analysis that allows for the analysis of asymmetric association between two or more categorical variables. NSCA involves graphically depicting the one-way relationship between variables cross classified in a contingency table through a biplot. This paper provides a comprehensive overview of the popular approaches of NSCA developed over the years. Some fundamental variations in the family of NSCA such as Simple NSCA, Doubly Ordered NSCA, Singly Ordered NSCA, Three-way Nominal NSCA, Triply Ordered NSCA etc. are discussed thoroughly. A systematic step-by-step algorithms for each variant of NSCA and their demonstrations are neatly presented. Further a summary of NSCA variants in literature, the concise tabular presentation of R-packages developed for variants of CA/NSCA and a collection of variety of datasets where NSCA is performed are the key features of the paper. Moreover, we compare and contrast the method of NSCA with multinomial logistic regression (MNLR) to discuss some disparities between both the approaches. The paper aims to provide the theoretical, practical and computational issues of NSCA in structured manner and to highlight the further challenges with reference to NSCA.</p>","PeriodicalId":49992,"journal":{"name":"Journal of the Korean Statistical Society","volume":"160 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Statistical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-023-00253-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-symmetric correspondence analysis (NSCA) is a multivariate data analysis technique that has gained increasing attention in recent years. NSCA is an extension of traditional correspondence analysis that allows for the analysis of asymmetric association between two or more categorical variables. NSCA involves graphically depicting the one-way relationship between variables cross classified in a contingency table through a biplot. This paper provides a comprehensive overview of the popular approaches of NSCA developed over the years. Some fundamental variations in the family of NSCA such as Simple NSCA, Doubly Ordered NSCA, Singly Ordered NSCA, Three-way Nominal NSCA, Triply Ordered NSCA etc. are discussed thoroughly. A systematic step-by-step algorithms for each variant of NSCA and their demonstrations are neatly presented. Further a summary of NSCA variants in literature, the concise tabular presentation of R-packages developed for variants of CA/NSCA and a collection of variety of datasets where NSCA is performed are the key features of the paper. Moreover, we compare and contrast the method of NSCA with multinomial logistic regression (MNLR) to discuss some disparities between both the approaches. The paper aims to provide the theoretical, practical and computational issues of NSCA in structured manner and to highlight the further challenges with reference to NSCA.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
名义变量和序数变量非对称对应分析的变体
非对称对应分析(NSCA)是一种多元数据分析技术,近年来受到越来越多的关注。非对称对应分析是传统对应分析的延伸,可以分析两个或多个分类变量之间的非对称关联。NSCA 包括通过双向图以图形方式描述或然表中交叉分类变量之间的单向关系。本文全面概述了多年来流行的 NSCA 方法。本文深入讨论了 NSCA 系列中的一些基本变体,如简单 NSCA、双排序 NSCA、单排序 NSCA、三向名义 NSCA、三重排序 NSCA 等。此外,还详细介绍了 NSCA 各变体的系统分步算法及其演示。此外,文献中的 NSCA 变体摘要、为 CA/NSCA 变体开发的 R 包的简明表述以及收集的各种 NSCA 数据集是本文的主要特色。此外,我们还将 NSCA 方法与多项式逻辑回归(MNLR)进行了对比,讨论了两种方法之间的一些差异。本文旨在以结构化的方式提供 NSCA 的理论、实践和计算问题,并强调 NSCA 所面临的进一步挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Korean Statistical Society
Journal of the Korean Statistical Society 数学-统计学与概率论
CiteScore
1.30
自引率
0.00%
发文量
37
审稿时长
3 months
期刊介绍: The Journal of the Korean Statistical Society publishes research articles that make original contributions to the theory and methodology of statistics and probability. It also welcomes papers on innovative applications of statistical methodology, as well as papers that give an overview of current topic of statistical research with judgements about promising directions for future work. The journal welcomes contributions from all countries.
期刊最新文献
Asymmetric kernel density estimation for biased data Community detection for networks based on Monte Carlo type algorithms Integrated volatility estimation: the case of observed noise variables Using statistical models for optimal packaging in semiconductor manufacturing processes Generalized parametric help in Hilbertian additive regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1