Research Advances in Close-Coupled Atomizer Flow and Atomizing Mechanisms

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Powder Metallurgy and Metal Ceramics Pub Date : 2024-03-21 DOI:10.1007/s11106-024-00403-x
Min Zhang, Zhaoming Zhang, Qiusheng Liu
{"title":"Research Advances in Close-Coupled Atomizer Flow and Atomizing Mechanisms","authors":"Min Zhang,&nbsp;Zhaoming Zhang,&nbsp;Qiusheng Liu","doi":"10.1007/s11106-024-00403-x","DOIUrl":null,"url":null,"abstract":"<p>As component manufacturing technology evolves, more demands are placed on improved performance of metal/alloy powders in medical, military, machining, and 3D printing applications. High-quality powders are characterized by low oxygen content, precise alloy composition, small particle size, and high particle sphericity. Coupled gas atomization powder preparation technology is an ideal choice for preparing high-quality powders with high atomization efficiency, low oxygen content, and high cooling rate. However, this powder preparation technology’s multiphase flow and multiscale coupling is a complicated physical process. In addition, the mechanism of atomization has not yet been fully understood. Thus, there is no consensus on the atomization phenomena and atomization mechanisms. Close-coupled gas atomization powder preparation technology is facing great challenges in the field of low-cost mass production of high-quality powders. Therefore, it is expected to improve the close-coupled gas atomized powder preparation technology and achieve breakthroughs in atomization principle, such as high-efficiency gas atomization technology, intelligent control of the high-efficiency gas atomization process, and so on. In this respect, this review summarizes the atomizer structures, gas atomization flow field-testing technologies, and gas atomization flow field numerical simulations based on relevant literature. In addition, the gas atomization mechanism of the closely coupled atomizers will be analyzed. Finally, several research directions are proposed for further in-depth studies on the atomization characteristics and mechanisms of close-coupled vortex loop slit atomizers.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 7-8","pages":"400 - 426"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-024-00403-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

As component manufacturing technology evolves, more demands are placed on improved performance of metal/alloy powders in medical, military, machining, and 3D printing applications. High-quality powders are characterized by low oxygen content, precise alloy composition, small particle size, and high particle sphericity. Coupled gas atomization powder preparation technology is an ideal choice for preparing high-quality powders with high atomization efficiency, low oxygen content, and high cooling rate. However, this powder preparation technology’s multiphase flow and multiscale coupling is a complicated physical process. In addition, the mechanism of atomization has not yet been fully understood. Thus, there is no consensus on the atomization phenomena and atomization mechanisms. Close-coupled gas atomization powder preparation technology is facing great challenges in the field of low-cost mass production of high-quality powders. Therefore, it is expected to improve the close-coupled gas atomized powder preparation technology and achieve breakthroughs in atomization principle, such as high-efficiency gas atomization technology, intelligent control of the high-efficiency gas atomization process, and so on. In this respect, this review summarizes the atomizer structures, gas atomization flow field-testing technologies, and gas atomization flow field numerical simulations based on relevant literature. In addition, the gas atomization mechanism of the closely coupled atomizers will be analyzed. Finally, several research directions are proposed for further in-depth studies on the atomization characteristics and mechanisms of close-coupled vortex loop slit atomizers.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近耦合雾化器流动和雾化机制的研究进展
随着零部件制造技术的发展,医疗、军事、机械加工和 3D 打印应用对金属/合金粉末的性能提出了更高的要求。高质量粉末的特点是含氧量低、合金成分精确、粒度小、颗粒球形度高。耦合气体雾化粉末制备技术是制备高质量粉末的理想选择,具有雾化效率高、氧含量低和冷却速度高等特点。然而,这种粉末制备技术的多相流和多尺度耦合是一个复杂的物理过程。此外,雾化的机理也尚未被完全理解。因此,人们对雾化现象和雾化机理还没有达成共识。在低成本大规模生产高质量粉末领域,近耦合气体雾化粉末制备技术正面临着巨大的挑战。因此,人们期待改进近耦合气体雾化制备粉末技术,实现雾化原理的突破,如高效气体雾化技术、高效气体雾化过程的智能控制等。为此,本综述在相关文献的基础上,总结了雾化器结构、气体雾化流场测试技术以及气体雾化流场数值模拟。此外,还将分析紧密耦合雾化器的气体雾化机理。最后,为进一步深入研究近耦合涡流环狭缝雾化器的雾化特性和机理提出了几个研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Powder Metallurgy and Metal Ceramics
Powder Metallurgy and Metal Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.90
自引率
20.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.
期刊最新文献
Properties of Powders Produced by Plasma-Arc Spheroidization of Current-Carrying Fe–Al Flux-Cored Wire Tribotechnical Properties of Copper-Based Antifriction Composites for High-Speed Friction Units of Printing Machines Influence of f–d Interaction on Tunnel Magnetoresistance and Magnetoimpedance in Island Fe/Gd2O3 Nanostructures Experimental Studies on the Effect of Destructive Reagents on Metal Structural Elements Structural Creep Sensitivity of ARB-Processed Al/SiC/Cu Bimetallic Composite Strip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1