{"title":"Passage-aware Search Result Diversification","authors":"Zhan Su, Zhicheng Dou, Yutao Zhu, Ji-Rong Wen","doi":"10.1145/3653672","DOIUrl":null,"url":null,"abstract":"<p>Research on search result diversification strives to enhance the variety of subtopics within the list of search results. Existing studies usually treat a document as a whole and represent it with one fixed-length vector. However, considering that a long document could cover different aspects of a query, using a single vector to represent the document is usually insufficient. To tackle this problem, we propose to exploit multiple passages to better represent documents in search result diversification. Different passages of each document may reflect different subtopics of the query and comparison among the passages can improve result diversity. Specifically, we segment the entire document into multiple passages and train a classifier to filter out the irrelevant ones. Then the document diversity is measured based on several passages that can offer the information needs of the query. Thereafter, we devise a passage-aware search result diversification framework that takes into account the topic information contained in the selected document sequence and candidate documents. The candidate documents’ novelty is evaluated based on their passages while considering the dynamically selected document sequence. We conducted experiments on a commonly utilized dataset, and the results indicate that our proposed method performs better than the most leading methods.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"266 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653672","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Research on search result diversification strives to enhance the variety of subtopics within the list of search results. Existing studies usually treat a document as a whole and represent it with one fixed-length vector. However, considering that a long document could cover different aspects of a query, using a single vector to represent the document is usually insufficient. To tackle this problem, we propose to exploit multiple passages to better represent documents in search result diversification. Different passages of each document may reflect different subtopics of the query and comparison among the passages can improve result diversity. Specifically, we segment the entire document into multiple passages and train a classifier to filter out the irrelevant ones. Then the document diversity is measured based on several passages that can offer the information needs of the query. Thereafter, we devise a passage-aware search result diversification framework that takes into account the topic information contained in the selected document sequence and candidate documents. The candidate documents’ novelty is evaluated based on their passages while considering the dynamically selected document sequence. We conducted experiments on a commonly utilized dataset, and the results indicate that our proposed method performs better than the most leading methods.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.