Bayesian-based probabilistic models for the ultimate drift capacity of rectangular reinforced concrete columns failed in flexure mode

IF 3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Probabilistic Engineering Mechanics Pub Date : 2024-03-19 DOI:10.1016/j.probengmech.2024.103614
Ying Ma , Dongsheng Wang , Zhiguo Sun , Jiahao Mi , Zebin Wu
{"title":"Bayesian-based probabilistic models for the ultimate drift capacity of rectangular reinforced concrete columns failed in flexure mode","authors":"Ying Ma ,&nbsp;Dongsheng Wang ,&nbsp;Zhiguo Sun ,&nbsp;Jiahao Mi ,&nbsp;Zebin Wu","doi":"10.1016/j.probengmech.2024.103614","DOIUrl":null,"url":null,"abstract":"<div><p>To accurately predict the ultimate drift capacity of reinforced concrete (RC) columns failed in flexure mode under seismic loading, a probabilistic methodology is proposed to correct the biases in deterministic models and establish probabilistic models. Probabilistic correction models are constructed based on Bayesian updating, which can consider potential critical influences and also yield probability distribution associated with the model parameters and predictions. The probabilistic models are simplified to identify the significant informative terms by Bayesian updating. Then, the influences of the physical properties and size of the sample on the probabilistic models are discussed. The results show that the Bayesian-based correction method can increase the accuracy of predictions and quantify uncertainties. Additionally, adding new samples with different physical properties in Bayesian updating can expand the scope of application of probabilistic models, and the sample size should be at least two times the number of variables involved in Bayesian updating.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000365","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To accurately predict the ultimate drift capacity of reinforced concrete (RC) columns failed in flexure mode under seismic loading, a probabilistic methodology is proposed to correct the biases in deterministic models and establish probabilistic models. Probabilistic correction models are constructed based on Bayesian updating, which can consider potential critical influences and also yield probability distribution associated with the model parameters and predictions. The probabilistic models are simplified to identify the significant informative terms by Bayesian updating. Then, the influences of the physical properties and size of the sample on the probabilistic models are discussed. The results show that the Bayesian-based correction method can increase the accuracy of predictions and quantify uncertainties. Additionally, adding new samples with different physical properties in Bayesian updating can expand the scope of application of probabilistic models, and the sample size should be at least two times the number of variables involved in Bayesian updating.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯的钢筋混凝土矩形柱抗弯极限漂移能力概率模型
为了准确预测在地震荷载作用下屈曲失效的钢筋混凝土(RC)柱的极限漂移能力,提出了一种概率方法来修正确定性模型中的偏差并建立概率模型。概率修正模型是基于贝叶斯更新法构建的,它可以考虑潜在的关键影响因素,还能得出与模型参数和预测相关的概率分布。通过贝叶斯更新,简化概率模型以确定重要的信息项。然后,讨论了物理特性和样本大小对概率模型的影响。结果表明,基于贝叶斯的修正方法可以提高预测的准确性并量化不确定性。此外,在贝叶斯更新中加入具有不同物理特性的新样本可以扩大概率模型的应用范围,样本大小至少应是贝叶斯更新所涉及变量数量的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
期刊最新文献
Real-time anomaly detection of the stochastically excited systems on spherical (S2) manifold Nonprobabilistic time-dependent reliability analysis for uncertain structures under interval process loads Fractional-order filter approximations for efficient stochastic response determination of wind-excited linear structural systems Seismic reliability analysis using Subset Simulation enhanced with an explorative adaptive conditional sampling algorithm Efficient optimization-based method for simultaneous calibration of load and resistance factors considering multiple target reliability indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1