Evaluating the Impact of Data Preprocessing Techniques on the Performance of Intrusion Detection Systems

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Network and Systems Management Pub Date : 2024-03-22 DOI:10.1007/s10922-024-09813-z
Kelson Carvalho Santos, Rodrigo Sanches Miani, Flávio de Oliveira Silva
{"title":"Evaluating the Impact of Data Preprocessing Techniques on the Performance of Intrusion Detection Systems","authors":"Kelson Carvalho Santos, Rodrigo Sanches Miani, Flávio de Oliveira Silva","doi":"10.1007/s10922-024-09813-z","DOIUrl":null,"url":null,"abstract":"<p>The development of Intrusion Detection Systems using Machine Learning techniques (ML-based IDS) has emerged as an important research topic in the cybersecurity field. However, there is a noticeable absence of systematic studies to comprehend the usability of such systems in real-world applications. This paper analyzes the impact of data preprocessing techniques on the performance of ML-based IDS using two public datasets, UNSW-NB15 and CIC-IDS2017. Specifically, we evaluated the effects of data cleaning, encoding, and normalization techniques on the performance of binary and multiclass intrusion detection models. This work investigates the impact of data preprocessing techniques on the performance of ML-based IDS and how the performance of different ML-based IDS is affected by data preprocessing techniques. To this end, we implemented a machine learning pipeline to apply the data preprocessing techniques in different scenarios to answer such questions. The findings analyzed using the Friedman statistical test and Nemenyi post-hoc test revealed significant differences in groups of data preprocessing techniques and ML-based IDS, according to the evaluation metrics. However, these differences were not observed in multiclass scenarios for data preprocessing techniques. Additionally, ML-based IDS exhibited varying performances in binary and multiclass classifications. Therefore, our investigation presents insights into the efficacy of different data preprocessing techniques for building robust and accurate intrusion detection models.</p>","PeriodicalId":50119,"journal":{"name":"Journal of Network and Systems Management","volume":"12 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Systems Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10922-024-09813-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of Intrusion Detection Systems using Machine Learning techniques (ML-based IDS) has emerged as an important research topic in the cybersecurity field. However, there is a noticeable absence of systematic studies to comprehend the usability of such systems in real-world applications. This paper analyzes the impact of data preprocessing techniques on the performance of ML-based IDS using two public datasets, UNSW-NB15 and CIC-IDS2017. Specifically, we evaluated the effects of data cleaning, encoding, and normalization techniques on the performance of binary and multiclass intrusion detection models. This work investigates the impact of data preprocessing techniques on the performance of ML-based IDS and how the performance of different ML-based IDS is affected by data preprocessing techniques. To this end, we implemented a machine learning pipeline to apply the data preprocessing techniques in different scenarios to answer such questions. The findings analyzed using the Friedman statistical test and Nemenyi post-hoc test revealed significant differences in groups of data preprocessing techniques and ML-based IDS, according to the evaluation metrics. However, these differences were not observed in multiclass scenarios for data preprocessing techniques. Additionally, ML-based IDS exhibited varying performances in binary and multiclass classifications. Therefore, our investigation presents insights into the efficacy of different data preprocessing techniques for building robust and accurate intrusion detection models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估数据预处理技术对入侵检测系统性能的影响
利用机器学习技术开发入侵检测系统(基于 ML 的 IDS)已成为网络安全领域的一个重要研究课题。然而,在了解此类系统在实际应用中的可用性方面,却明显缺乏系统性的研究。本文利用 UNSW-NB15 和 CIC-IDS2017 这两个公开数据集,分析了数据预处理技术对基于 ML 的 IDS 性能的影响。具体来说,我们评估了数据清理、编码和规范化技术对二元和多类入侵检测模型性能的影响。这项工作研究了数据预处理技术对基于 ML 的 IDS 性能的影响,以及不同基于 ML 的 IDS 的性能如何受到数据预处理技术的影响。为此,我们实施了一个机器学习管道,在不同场景中应用数据预处理技术来回答这些问题。使用 Friedman 统计检验和 Nemenyi 事后检验分析的结果显示,根据评估指标,数据预处理技术组和基于 ML 的 IDS 组之间存在显著差异。不过,在数据预处理技术的多类情况下,没有观察到这些差异。此外,基于 ML 的 IDS 在二分类和多分类中表现出不同的性能。因此,我们的研究深入揭示了不同数据预处理技术在构建稳健、准确的入侵检测模型方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
16.70%
发文量
65
审稿时长
>12 weeks
期刊介绍: Journal of Network and Systems Management, features peer-reviewed original research, as well as case studies in the fields of network and system management. The journal regularly disseminates significant new information on both the telecommunications and computing aspects of these fields, as well as their evolution and emerging integration. This outstanding quarterly covers architecture, analysis, design, software, standards, and migration issues related to the operation, management, and control of distributed systems and communication networks for voice, data, video, and networked computing.
期刊最新文献
Reinforcement Learning for Real-Time Federated Learning for Resource-Constrained Edge Cluster Availability and Performance Assessment of IoMT Systems: A Stochastic Modeling Approach Attack Detection in IoT Network Using Support Vector Machine and Improved Feature Selection Technique Generative Adversarial Network Models for Anomaly Detection in Software-Defined Networks Decentralized Distance-based Strategy for Detection of Sybil Attackers and Sybil Nodes in VANET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1