Mustafa Daraghmeh , Anjali Agarwal , Yaser Jararweh
{"title":"Optimizing serverless computing: A comparative analysis of multi-output regression models for predictive function invocations","authors":"Mustafa Daraghmeh , Anjali Agarwal , Yaser Jararweh","doi":"10.1016/j.simpat.2024.102925","DOIUrl":null,"url":null,"abstract":"<div><p>In the rapidly evolving domain of serverless computing, the need for efficient and accurate predictive methods of function invocation becomes paramount. This study introduces a comprehensive suite of innovations to improve the predictability and efficiency of function invocation within serverless architectures. By employing multi-output regression models, we perform a multi-level analysis of function invocation patterns across user, application, and function levels, revealing insights into granular workload behaviors. We rigorously investigate the impact of windowing techniques and dimensionality reduction on model performance via Principal Component Analysis (PCA), offering a nuanced understanding of data complexities and computational implications. Our novel comparative analysis framework meticulously evaluates the performance of these methods against various windowing configurations, utilizing the Azure Functions dataset for real-world applicability. In addition, we assess the temporal stability of the models and the variation of day-to-day performance, providing a holistic view of their operational viability. Our contributions address critical gaps in the predictive modeling of serverless computing and set a new benchmark for operational efficiency and data-driven decision-making in cloud environments. This study is poised to guide future advancements in serverless computing, driving theoretically sound and practically viable innovations.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"134 ","pages":"Article 102925"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X2400039X/pdfft?md5=b932b4c65c3822489417ec48684adc09&pid=1-s2.0-S1569190X2400039X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X2400039X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the rapidly evolving domain of serverless computing, the need for efficient and accurate predictive methods of function invocation becomes paramount. This study introduces a comprehensive suite of innovations to improve the predictability and efficiency of function invocation within serverless architectures. By employing multi-output regression models, we perform a multi-level analysis of function invocation patterns across user, application, and function levels, revealing insights into granular workload behaviors. We rigorously investigate the impact of windowing techniques and dimensionality reduction on model performance via Principal Component Analysis (PCA), offering a nuanced understanding of data complexities and computational implications. Our novel comparative analysis framework meticulously evaluates the performance of these methods against various windowing configurations, utilizing the Azure Functions dataset for real-world applicability. In addition, we assess the temporal stability of the models and the variation of day-to-day performance, providing a holistic view of their operational viability. Our contributions address critical gaps in the predictive modeling of serverless computing and set a new benchmark for operational efficiency and data-driven decision-making in cloud environments. This study is poised to guide future advancements in serverless computing, driving theoretically sound and practically viable innovations.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.