Boundary-aware value function generation for safe stochastic motion planning

Junhong Xu, Kai Yin, Jason M. Gregory, Kris Hauser, Lantao Liu
{"title":"Boundary-aware value function generation for safe stochastic motion planning","authors":"Junhong Xu, Kai Yin, Jason M. Gregory, Kris Hauser, Lantao Liu","doi":"10.1177/02783649241238766","DOIUrl":null,"url":null,"abstract":"Navigation safety is critical for many autonomous systems such as self-driving vehicles in an urban environment. It requires an explicit consideration of boundary constraints that describe the borders of any infeasible, non-navigable, or unsafe regions. We propose a principled boundary-aware safe stochastic planning framework with promising results. Our method generates a value function that can strictly distinguish the state values between free (safe) and non-navigable (boundary) spaces in the continuous state, naturally leading to a safe boundary-aware policy. At the core of our solution lies a seamless integration of finite elements and kernel-based functions, where the finite elements allow us to characterize safety-critical states’ borders accurately, and the kernel-based function speeds up computation for the non-safety-critical states. The proposed method was evaluated through extensive simulations and demonstrated safe navigation behaviors in mobile navigation tasks. Additionally, we demonstrate that our approach can maneuver safely and efficiently in cluttered real-world environments using a ground vehicle with strong external disturbances, such as navigating on a slippery floor and against external human intervention.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"293 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649241238766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Navigation safety is critical for many autonomous systems such as self-driving vehicles in an urban environment. It requires an explicit consideration of boundary constraints that describe the borders of any infeasible, non-navigable, or unsafe regions. We propose a principled boundary-aware safe stochastic planning framework with promising results. Our method generates a value function that can strictly distinguish the state values between free (safe) and non-navigable (boundary) spaces in the continuous state, naturally leading to a safe boundary-aware policy. At the core of our solution lies a seamless integration of finite elements and kernel-based functions, where the finite elements allow us to characterize safety-critical states’ borders accurately, and the kernel-based function speeds up computation for the non-safety-critical states. The proposed method was evaluated through extensive simulations and demonstrated safe navigation behaviors in mobile navigation tasks. Additionally, we demonstrate that our approach can maneuver safely and efficiently in cluttered real-world environments using a ground vehicle with strong external disturbances, such as navigating on a slippery floor and against external human intervention.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为安全随机运动规划生成边界感知值函数
导航安全对于许多自动驾驶系统(如城市环境中的自动驾驶车辆)至关重要。这就需要明确考虑边界约束条件,这些约束条件描述了任何不可行、不可导航或不安全区域的边界。我们提出了一个原则性的边界感知安全随机规划框架,并取得了可喜的成果。我们的方法生成的值函数可以严格区分连续状态下自由(安全)和不可航行(边界)空间的状态值,自然而然地产生安全边界感知策略。我们的解决方案的核心是将有限元和基于内核的函数无缝集成在一起,其中有限元使我们能够准确描述安全临界状态的边界,而基于内核的函数则加快了非安全临界状态的计算速度。我们通过大量模拟对所提出的方法进行了评估,并在移动导航任务中展示了安全导航行为。此外,我们还证明了我们的方法可以在杂乱的真实世界环境中安全高效地操纵具有强烈外部干扰的地面车辆,例如在湿滑的地面上导航,并且不受外部人为干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer learning in robotics: An upcoming breakthrough? A review of promises and challenges Selected papers from WAFR 2022 Continuum concentric push–pull robots: A Cosserat rod model Sim-to-real transfer of adaptive control parameters for AUV stabilisation under current disturbance No compromise in solution quality: Speeding up belief-dependent continuous partially observable Markov decision processes via adaptive multilevel simplification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1