The residual flow in well-optimized stellarators

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Journal of Plasma Physics Pub Date : 2024-03-21 DOI:10.1017/s002237782400031x
G.G. Plunk, P. Helander
{"title":"The residual flow in well-optimized stellarators","authors":"G.G. Plunk, P. Helander","doi":"10.1017/s002237782400031x","DOIUrl":null,"url":null,"abstract":"The gyrokinetic theory of the residual flow, in the electrostatic limit, is revisited, with optimized stellarators in mind. We consider general initial conditions for the problem, and identify cases that lead to a non-zonal residual electrostatic potential, i.e. one having a significant component that varies within a flux surface. We investigate the behaviour of the ‘intermediate residual’ in stellarators, a measure of the flow that remains after geodesic acoustic modes have damped away, but before the action of the slower damping that is caused by unconfined particle orbits. The case of a quasi-isodynamic stellarator is identified as having a particularly large such residual, owing to the small orbit width achieved by optimization.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"8 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s002237782400031x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The gyrokinetic theory of the residual flow, in the electrostatic limit, is revisited, with optimized stellarators in mind. We consider general initial conditions for the problem, and identify cases that lead to a non-zonal residual electrostatic potential, i.e. one having a significant component that varies within a flux surface. We investigate the behaviour of the ‘intermediate residual’ in stellarators, a measure of the flow that remains after geodesic acoustic modes have damped away, but before the action of the slower damping that is caused by unconfined particle orbits. The case of a quasi-isodynamic stellarator is identified as having a particularly large such residual, owing to the small orbit width achieved by optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化恒星器中的剩余流量
我们以优化恒星器为出发点,重新审视了静电极限下残留流的陀螺动理论。我们考虑了问题的一般初始条件,并确定了导致非日冕残余静电势的情况,即在通量面内有一个重要分量变化的残余静电势。我们研究了恒星器中 "中间残余 "的行为,它是测地声波模式阻尼消失后,但在非约束粒子轨道引起的较慢阻尼作用之前残余流动的量度。在准等动力学恒星器的情况下,由于通过优化实现了较小的轨道宽度,这种残余量特别大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Plasma Physics
Journal of Plasma Physics 物理-物理:流体与等离子体
CiteScore
3.50
自引率
16.00%
发文量
106
审稿时长
6-12 weeks
期刊介绍: JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.
期刊最新文献
Quantized tensor networks for solving the Vlasov–Maxwell equations Nonlinear solution of classical three-wave interaction via finite-dimensional quantum model Improved axial confinement in the open trap by the combination of helical and short mirrors Spatial distribution of self-seeded air lasers induced by the femtosecond laser filament plasma Available energy of plasmas with small fluctuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1