Targeting MicroRNAs with Small Molecules.

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Non-Coding RNA Pub Date : 2024-03-14 DOI:10.3390/ncrna10020017
Kisanet Tadesse, Raphael I Benhamou
{"title":"Targeting MicroRNAs with Small Molecules.","authors":"Kisanet Tadesse, Raphael I Benhamou","doi":"10.3390/ncrna10020017","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRs) have been implicated in numerous diseases, presenting an attractive target for the development of novel therapeutics. The various regulatory roles of miRs in cellular processes underscore the need for precise strategies. Recent advances in RNA research offer hope by enabling the identification of small molecules capable of selectively targeting specific disease-associated miRs. This understanding paves the way for developing small molecules that can modulate the activity of disease-associated miRs. Herein, we discuss the progress made in the field of drug discovery processes, transforming the landscape of miR-targeted therapeutics by small molecules. By leveraging various approaches, researchers can systematically identify compounds to modulate miR function, providing a more potent intervention either by inhibiting or degrading miRs. The implementation of these multidisciplinary approaches bears the potential to revolutionize treatments for diverse diseases, signifying a significant stride towards the targeting of miRs by precision medicine.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"10 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961812/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna10020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNAs (miRs) have been implicated in numerous diseases, presenting an attractive target for the development of novel therapeutics. The various regulatory roles of miRs in cellular processes underscore the need for precise strategies. Recent advances in RNA research offer hope by enabling the identification of small molecules capable of selectively targeting specific disease-associated miRs. This understanding paves the way for developing small molecules that can modulate the activity of disease-associated miRs. Herein, we discuss the progress made in the field of drug discovery processes, transforming the landscape of miR-targeted therapeutics by small molecules. By leveraging various approaches, researchers can systematically identify compounds to modulate miR function, providing a more potent intervention either by inhibiting or degrading miRs. The implementation of these multidisciplinary approaches bears the potential to revolutionize treatments for diverse diseases, signifying a significant stride towards the targeting of miRs by precision medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用小分子靶向 MicroRNA。
微小核糖核酸(miRs)与多种疾病有关,是开发新型疗法的诱人靶点。miRs 在细胞过程中发挥着各种调控作用,因此需要制定精确的策略。RNA 研究的最新进展给人们带来了希望,因为它能够鉴定出能够选择性地靶向特定疾病相关 miRs 的小分子。这种认识为开发能调节疾病相关 miRs 活性的小分子铺平了道路。在此,我们将讨论药物发现过程领域所取得的进展,这些进展改变了小分子 miR 靶向疗法的格局。通过利用各种方法,研究人员可以系统地发现调节 miR 功能的化合物,通过抑制或降解 miR 提供更有效的干预。这些多学科方法的实施有可能彻底改变各种疾病的治疗方法,标志着精准医学在靶向 miRs 方面迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
期刊最新文献
Cardiomyopathies: The Role of Non-Coding RNAs. MicroRNA Biogenesis, Gene Regulation Mechanisms, and Availability in Foods. Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer. Non-Coding RNA as a Biomarker in Lung Cancer. Back to the Origin: Mechanisms of circRNA-Directed Regulation of Host Genes in Human Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1