{"title":"AMS-U-Net: automatic mass segmentation in digital breast tomosynthesis via U-Net.","authors":"Ahmad Qasem, Genggeng Qin, Zhiguo Zhou","doi":"10.1117/1.JMI.11.2.024005","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The objective of this study was to develop a fully automatic mass segmentation method called AMS-U-Net for digital breast tomosynthesis (DBT), a popular breast cancer screening imaging modality. The aim was to address the challenges posed by the increasing number of slices in DBT, which leads to higher mass contouring workload and decreased treatment efficiency.</p><p><strong>Approach: </strong>The study used 50 slices from different DBT volumes for evaluation. The AMS-U-Net approach consisted of four stages: image pre-processing, AMS-U-Net training, image segmentation, and post-processing. The model performance was evaluated by calculating the true positive ratio (TPR), false positive ratio (FPR), F-score, intersection over union (IoU), and 95% Hausdorff distance (pixels) as they are appropriate for datasets with class imbalance.</p><p><strong>Results: </strong>The model achieved 0.911, 0.003, 0.911, 0.900, 5.82 for TPR, FPR, F-score, IoU, and 95% Hausdorff distance, respectively.</p><p><strong>Conclusions: </strong>The AMS-U-Net model demonstrated impressive visual and quantitative results, achieving high accuracy in mass segmentation without the need for human interaction. This capability has the potential to significantly increase clinical efficiency and workflow in DBT for breast cancer screening.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 2","pages":"024005"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.2.024005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The objective of this study was to develop a fully automatic mass segmentation method called AMS-U-Net for digital breast tomosynthesis (DBT), a popular breast cancer screening imaging modality. The aim was to address the challenges posed by the increasing number of slices in DBT, which leads to higher mass contouring workload and decreased treatment efficiency.
Approach: The study used 50 slices from different DBT volumes for evaluation. The AMS-U-Net approach consisted of four stages: image pre-processing, AMS-U-Net training, image segmentation, and post-processing. The model performance was evaluated by calculating the true positive ratio (TPR), false positive ratio (FPR), F-score, intersection over union (IoU), and 95% Hausdorff distance (pixels) as they are appropriate for datasets with class imbalance.
Results: The model achieved 0.911, 0.003, 0.911, 0.900, 5.82 for TPR, FPR, F-score, IoU, and 95% Hausdorff distance, respectively.
Conclusions: The AMS-U-Net model demonstrated impressive visual and quantitative results, achieving high accuracy in mass segmentation without the need for human interaction. This capability has the potential to significantly increase clinical efficiency and workflow in DBT for breast cancer screening.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.