AMS-U-Net: automatic mass segmentation in digital breast tomosynthesis via U-Net.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Imaging Pub Date : 2024-03-01 Epub Date: 2024-03-23 DOI:10.1117/1.JMI.11.2.024005
Ahmad Qasem, Genggeng Qin, Zhiguo Zhou
{"title":"AMS-U-Net: automatic mass segmentation in digital breast tomosynthesis via U-Net.","authors":"Ahmad Qasem, Genggeng Qin, Zhiguo Zhou","doi":"10.1117/1.JMI.11.2.024005","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The objective of this study was to develop a fully automatic mass segmentation method called AMS-U-Net for digital breast tomosynthesis (DBT), a popular breast cancer screening imaging modality. The aim was to address the challenges posed by the increasing number of slices in DBT, which leads to higher mass contouring workload and decreased treatment efficiency.</p><p><strong>Approach: </strong>The study used 50 slices from different DBT volumes for evaluation. The AMS-U-Net approach consisted of four stages: image pre-processing, AMS-U-Net training, image segmentation, and post-processing. The model performance was evaluated by calculating the true positive ratio (TPR), false positive ratio (FPR), F-score, intersection over union (IoU), and 95% Hausdorff distance (pixels) as they are appropriate for datasets with class imbalance.</p><p><strong>Results: </strong>The model achieved 0.911, 0.003, 0.911, 0.900, 5.82 for TPR, FPR, F-score, IoU, and 95% Hausdorff distance, respectively.</p><p><strong>Conclusions: </strong>The AMS-U-Net model demonstrated impressive visual and quantitative results, achieving high accuracy in mass segmentation without the need for human interaction. This capability has the potential to significantly increase clinical efficiency and workflow in DBT for breast cancer screening.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 2","pages":"024005"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.2.024005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The objective of this study was to develop a fully automatic mass segmentation method called AMS-U-Net for digital breast tomosynthesis (DBT), a popular breast cancer screening imaging modality. The aim was to address the challenges posed by the increasing number of slices in DBT, which leads to higher mass contouring workload and decreased treatment efficiency.

Approach: The study used 50 slices from different DBT volumes for evaluation. The AMS-U-Net approach consisted of four stages: image pre-processing, AMS-U-Net training, image segmentation, and post-processing. The model performance was evaluated by calculating the true positive ratio (TPR), false positive ratio (FPR), F-score, intersection over union (IoU), and 95% Hausdorff distance (pixels) as they are appropriate for datasets with class imbalance.

Results: The model achieved 0.911, 0.003, 0.911, 0.900, 5.82 for TPR, FPR, F-score, IoU, and 95% Hausdorff distance, respectively.

Conclusions: The AMS-U-Net model demonstrated impressive visual and quantitative results, achieving high accuracy in mass segmentation without the need for human interaction. This capability has the potential to significantly increase clinical efficiency and workflow in DBT for breast cancer screening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AMS-U-Net:通过 U-Net 在数字乳腺断层合成中自动分割肿块。
目的:本研究的目的是为数字乳腺断层合成(DBT)这种流行的乳腺癌筛查成像模式开发一种名为 AMS-U-Net 的全自动质量分割方法。其目的是解决 DBT 中切片数量不断增加所带来的挑战,因为切片数量增加会导致质量轮廓工作量增加和治疗效率降低:研究使用了不同 DBT 容量的 50 张切片进行评估。AMS-U-Net 方法包括四个阶段:图像预处理、AMS-U-Net 训练、图像分割和后处理。模型的性能通过计算真阳性率(TPR)、假阳性率(FPR)、F-score、交集大于联合(IoU)和 95% Hausdorff 距离(像素)来评估,因为它们适用于类不平衡的数据集:该模型的 TPR、FPR、F-score、IoU 和 95% Hausdorff 距离分别达到 0.911、0.003、0.911、0.900 和 5.82:AMS-U-Net 模型展示了令人印象深刻的视觉和定量结果,无需人工交互即可实现高精度的质量分割。这种能力有望显著提高乳腺癌筛查 DBT 的临床效率和工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
期刊最新文献
In-silico study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis. Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging. Breathing motion compensation in chest tomosynthesis: evaluation of the effect on image quality and presence of artifacts. Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring. Our journey toward implementation of digital breast tomosynthesis in breast cancer screening: the Malmö Breast Tomosynthesis Screening Project.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1