Tumescenamide C, a cyclic lipodepsipeptide from Streptomyces sp. KUSC_F05, exerts antimicrobial activity against the scab-forming actinomycete Streptomyces scabiei
{"title":"Tumescenamide C, a cyclic lipodepsipeptide from Streptomyces sp. KUSC_F05, exerts antimicrobial activity against the scab-forming actinomycete Streptomyces scabiei","authors":"Kensuke Kaneko, Marika Mieda, Yulu Jiang, Nobuaki Takahashi, Hideaki Kakeya","doi":"10.1038/s41429-024-00716-4","DOIUrl":null,"url":null,"abstract":"The antimicrobial activity of tumescenamide C against the scab-forming S. scabiei NBRC13768 was confirmed with a potent IC50 value (1.5 μg/mL). Three tumescenamide C-resistant S. scabiei strains were generated to compare their gene variants. All three resistant strains contained nonsynonymous variants in genes related to cellobiose/cellotriose transport system components; cebF1, cebF2, and cebG2, which are responsible for the production of the phytotoxin thaxtomin A. Decrease in thaxtomin A production and the virulence of the three resistant strains were revealed by the LC/MS analysis and necrosis assay, respectively. Although the nonsynonymous variants were insufficient for identifying the molecular target of tumescenamide C, the cell wall component wall teichoic acid (WTA) was observed to bind significantly to tumescenamide C. Moreover, changes in the WTA contents were detected in the tumescenamide C-resistant strains. These results imply that tumescenamide C targets the cell wall system to exert antimicrobial effects on S. scabiei.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 6","pages":"353-364"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-024-00716-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The antimicrobial activity of tumescenamide C against the scab-forming S. scabiei NBRC13768 was confirmed with a potent IC50 value (1.5 μg/mL). Three tumescenamide C-resistant S. scabiei strains were generated to compare their gene variants. All three resistant strains contained nonsynonymous variants in genes related to cellobiose/cellotriose transport system components; cebF1, cebF2, and cebG2, which are responsible for the production of the phytotoxin thaxtomin A. Decrease in thaxtomin A production and the virulence of the three resistant strains were revealed by the LC/MS analysis and necrosis assay, respectively. Although the nonsynonymous variants were insufficient for identifying the molecular target of tumescenamide C, the cell wall component wall teichoic acid (WTA) was observed to bind significantly to tumescenamide C. Moreover, changes in the WTA contents were detected in the tumescenamide C-resistant strains. These results imply that tumescenamide C targets the cell wall system to exert antimicrobial effects on S. scabiei.
来自链霉菌 KUSC_F05 的环脂二肽 Tumescenamide C 对疥疮形成放线菌 Streptomyces scabiei 具有抗菌活性。
图森酰胺 C 对疥疮形成菌 NBRC13768 的抗菌活性得到了证实,其 IC50 值(1.5 μg/mL)非常有效。为了比较疥癣病菌的基因变异,生成了三株对 Tumescenamide C 具有抗性的疥癣病菌。这三种抗性菌株都含有与纤维生物糖/细胞三糖转运系统成分有关的非同义变体基因:cebF1、cebF2和cebG2,它们负责产生植物毒素thaxomin A。虽然非同义变体不足以确定噻菌胺 C 的分子靶标,但观察到细胞壁成分壁茶酸 (WTA) 与噻菌胺 C 有显著结合。这些结果表明,妥布酰胺 C 以细胞壁系统为目标,对疥螨产生抗菌作用。
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.