Joshua C Bledsoe, Brad E Gilleland, Austin F Wright, Evan M White, Grant H Crane, Christopher B Herron, Jason J Locklin, Branson W Ritchie
{"title":"A Biologically Degradable and BioseniaticTM Feedstock for the High-Quality 3D Printing of Anatomical Models.","authors":"Joshua C Bledsoe, Brad E Gilleland, Austin F Wright, Evan M White, Grant H Crane, Christopher B Herron, Jason J Locklin, Branson W Ritchie","doi":"10.5210/jbc.v47i2.13246","DOIUrl":null,"url":null,"abstract":"<p><p>A Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) -based filament was evaluated as an alternative feedstock for Fused Deposition Modeling (FDM) of instructional and clinical medical specimens. PHBHHx-based prints of domestic cat vertebrae, skull bone, and an aortic arch cast were found comparable to conventional materials. PHBHHx-based filament and extrudate samples were evaluated for biological degradability, to meet the BioseniaticTM standard, defined by the University of Georgia New Materials Institute. Both samples achieved more than 90% mineralization within 32 days in industrial composting conditions.</p>","PeriodicalId":75049,"journal":{"name":"The Journal of biocommunication","volume":"47 2","pages":"e5"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959741/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of biocommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5210/jbc.v47i2.13246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) -based filament was evaluated as an alternative feedstock for Fused Deposition Modeling (FDM) of instructional and clinical medical specimens. PHBHHx-based prints of domestic cat vertebrae, skull bone, and an aortic arch cast were found comparable to conventional materials. PHBHHx-based filament and extrudate samples were evaluated for biological degradability, to meet the BioseniaticTM standard, defined by the University of Georgia New Materials Institute. Both samples achieved more than 90% mineralization within 32 days in industrial composting conditions.