{"title":"Diffusion Models To Predict 3D Late Mechanical Activation From Sparse 2D Cardiac MRIs.","authors":"Nivetha Jayakumar, Jiarui Xing, Tonmoy Hossain, Fred Epstein, Kenneth Bilchick, Miaomiao Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying regions of late mechanical activation (LMA) of the left ventricular (LV) myocardium is critical in determining the optimal pacing site for cardiac resynchronization therapy in patients with heart failure. Several deep learning-based approaches have been developed to predict 3D LMA maps of LV myocardium from a stack of sparse 2D cardiac magnetic resonance imaging (MRIs). However, these models often loosely consider the geometric shape structure of the myocardium. This makes the reconstructed activation maps suboptimal; hence leading to a reduced accuracy of predicting the late activating regions of hearts. In this paper, we propose to use shape-constrained diffusion models to better reconstruct a 3D LMA map, given a limited number of 2D cardiac MRI slices. In contrast to previous methods that primarily rely on spatial correlations of image intensities for 3D reconstruction, our model leverages object shape as priors learned from the training data to guide the reconstruction process. To achieve this, we develop a joint learning network that simultaneously learns a mean shape under deformation models. Each reconstructed image is then considered as a deformed variant of the mean shape. To validate the performance of our model, we train and test the proposed framework on a publicly available mesh dataset of 3D myocardium and compare it with state-of-the-art deep learning-based reconstruction models. Experimental results show that our model achieves superior performance in reconstructing the 3D LMA maps as compared to the state-of-the-art models.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"225 ","pages":"190-200"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10958778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying regions of late mechanical activation (LMA) of the left ventricular (LV) myocardium is critical in determining the optimal pacing site for cardiac resynchronization therapy in patients with heart failure. Several deep learning-based approaches have been developed to predict 3D LMA maps of LV myocardium from a stack of sparse 2D cardiac magnetic resonance imaging (MRIs). However, these models often loosely consider the geometric shape structure of the myocardium. This makes the reconstructed activation maps suboptimal; hence leading to a reduced accuracy of predicting the late activating regions of hearts. In this paper, we propose to use shape-constrained diffusion models to better reconstruct a 3D LMA map, given a limited number of 2D cardiac MRI slices. In contrast to previous methods that primarily rely on spatial correlations of image intensities for 3D reconstruction, our model leverages object shape as priors learned from the training data to guide the reconstruction process. To achieve this, we develop a joint learning network that simultaneously learns a mean shape under deformation models. Each reconstructed image is then considered as a deformed variant of the mean shape. To validate the performance of our model, we train and test the proposed framework on a publicly available mesh dataset of 3D myocardium and compare it with state-of-the-art deep learning-based reconstruction models. Experimental results show that our model achieves superior performance in reconstructing the 3D LMA maps as compared to the state-of-the-art models.