Heart Disease Prediction Using GridSearchCV and Random Forest

Shagufta Rasheed, G. Kiran Kumar, D. Rani, M. V. V. Prasad Kantipudi, Anila M
{"title":"Heart Disease Prediction Using GridSearchCV and Random Forest","authors":"Shagufta Rasheed, G. Kiran Kumar, D. Rani, M. V. V. Prasad Kantipudi, Anila M","doi":"10.4108/eetpht.10.5523","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: This study explores machine learning algorithms (SVM, Adaboost, Logistic Regression, Naive Bayes, and Random Forest) for heart disease prediction, utilizing comprehensive cardiovascular and clinical data. Our research enables early detection, aiding timely interventions and preventive measures. Hyperparameter tuning via GridSearchCV enhances model accuracy, reducing heart disease's burdens. Methodology includes preprocessing, feature engineering, model training, and cross-validation. Results favor Random Forest for heart disease prediction, promising clinical applications. This work advances predictive healthcare analytics, highlighting machine learning's pivotal role. Our findings have implications for healthcare and policy, advocating efficient predictive models for early heart disease management. Advanced analytics can save lives, cut costs, and elevate care quality. \nOBJECTIVES: Evaluate the models to enable early detection, timely interventions, and preventive measures. \nMETHODS: Utilize GridSearchCV for hyperparameter tuning to enhance model accuracy. Employ preprocessing, feature engineering, model training, and cross-validation methodologies. Evaluate the performance of SVM, Adaboost, Logistic Regression, Naive Bayes, and Random Forest algorithms. \nRESULTS: The study reveals Random Forest as the favored algorithm for heart disease prediction, showing promise for clinical applications. Advanced analytics and hyperparameter tuning contribute to improved model accuracy, reducing the burden of heart disease. \nCONCLUSION: The research underscores machine learning's pivotal role in predictive healthcare analytics, advocating efficient models for early heart disease management.","PeriodicalId":36936,"journal":{"name":"EAI Endorsed Transactions on Pervasive Health and Technology","volume":" 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Pervasive Health and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetpht.10.5523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

INTRODUCTION: This study explores machine learning algorithms (SVM, Adaboost, Logistic Regression, Naive Bayes, and Random Forest) for heart disease prediction, utilizing comprehensive cardiovascular and clinical data. Our research enables early detection, aiding timely interventions and preventive measures. Hyperparameter tuning via GridSearchCV enhances model accuracy, reducing heart disease's burdens. Methodology includes preprocessing, feature engineering, model training, and cross-validation. Results favor Random Forest for heart disease prediction, promising clinical applications. This work advances predictive healthcare analytics, highlighting machine learning's pivotal role. Our findings have implications for healthcare and policy, advocating efficient predictive models for early heart disease management. Advanced analytics can save lives, cut costs, and elevate care quality. OBJECTIVES: Evaluate the models to enable early detection, timely interventions, and preventive measures. METHODS: Utilize GridSearchCV for hyperparameter tuning to enhance model accuracy. Employ preprocessing, feature engineering, model training, and cross-validation methodologies. Evaluate the performance of SVM, Adaboost, Logistic Regression, Naive Bayes, and Random Forest algorithms. RESULTS: The study reveals Random Forest as the favored algorithm for heart disease prediction, showing promise for clinical applications. Advanced analytics and hyperparameter tuning contribute to improved model accuracy, reducing the burden of heart disease. CONCLUSION: The research underscores machine learning's pivotal role in predictive healthcare analytics, advocating efficient models for early heart disease management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 GridSearchCV 和随机森林预测心脏病
简介:本研究利用全面的心血管和临床数据,探索用于心脏病预测的机器学习算法(SVM、Adaboost、逻辑回归、Naive Bayes 和随机森林)。我们的研究可实现早期检测,帮助及时采取干预和预防措施。通过 GridSearchCV 进行超参数调整可提高模型的准确性,减轻心脏病的负担。研究方法包括预处理、特征工程、模型训练和交叉验证。结果表明随机森林更适合心脏病预测,临床应用前景广阔。这项工作推动了预测性医疗分析的发展,突出了机器学习的关键作用。我们的研究结果对医疗保健和政策具有重要意义,倡导使用高效的预测模型进行早期心脏病管理。先进的分析技术可以挽救生命、降低成本并提高医疗质量。目标评估可实现早期检测、及时干预和预防措施的模型。方法:利用 GridSearchCV 进行超参数调整,以提高模型的准确性。采用预处理、特征工程、模型训练和交叉验证方法。评估 SVM、Adaboost、逻辑回归、Naive Bayes 和随机森林算法的性能。结果:研究表明,随机森林算法是心脏病预测的首选算法,在临床应用中大有可为。高级分析和超参数调整有助于提高模型的准确性,减轻心脏病的负担。结论:这项研究强调了机器学习在预测性医疗分析中的关键作用,提倡使用高效模型进行早期心脏病管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EAI Endorsed Transactions on Pervasive Health and Technology
EAI Endorsed Transactions on Pervasive Health and Technology Computer Science-Computer Science (miscellaneous)
CiteScore
3.50
自引率
0.00%
发文量
14
审稿时长
10 weeks
期刊最新文献
Thermal image processing system to monitor muscle warm-up in students prior to their sports activities Individual Intervention and Assessment of Students' Physical Fitness Based on the "Three Precision" Applet and Mixed Strategy Optimised CNN Networks Research on Portable Intelligent Terminal and APP Application Analysis and Intelligent Monitoring Method of College Students' Health Status Research on 2D Animation Simulation Based on Artificial Intelligence and Biomechanical Modeling Swift Diagnose: A High-Performance Shallow Convolutional Neural Network for Rapid and Reliable SARS-COV-2 Induced Pneumonia Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1