Lixin Tian, Wenxu Peng, Wenming Han, Shixin Zhang, Danping Cao
{"title":"Controllable image expansion of rock castings based on deep learning","authors":"Lixin Tian, Wenxu Peng, Wenming Han, Shixin Zhang, Danping Cao","doi":"10.1093/jge/gxae033","DOIUrl":null,"url":null,"abstract":"\n Digital rock physics (DRP) offers an effective method of deriving elastic parameters from digital rock images, but its practical application is always limited to limited datasets. Recently, deep learning techniques have presented a promising avenue for generating more extensive and cost-effective samples. However, generating controllable samples according to user definition remains very difficult due to high dependence on sufficient datasets. To resolve this problem, a new network was proposed based on the UNet framework through image translation (UNet-IT) to expand rock castings by given porosity in relatively fewer datasets. Practical tests on carbonate rock images demonstrate that the proposed method can generate samples tailored to specific porosity requirements, which achieved a minimum porosity relative error of less than 1%. Compared with the unextended samples, the generated ones have completely different pore structures in terms of two-point probability, two-point cluster and lineal path functions. Furthermore, the elastic parameters of the generated images obtained through the finite element method (FEM) and practical logging data matched well, with an average relative error of approximately 9%. This indicates that the generated samples can be used as effective data to estimate fine rock physics templates and then improve inversion accuracy.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae033","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Digital rock physics (DRP) offers an effective method of deriving elastic parameters from digital rock images, but its practical application is always limited to limited datasets. Recently, deep learning techniques have presented a promising avenue for generating more extensive and cost-effective samples. However, generating controllable samples according to user definition remains very difficult due to high dependence on sufficient datasets. To resolve this problem, a new network was proposed based on the UNet framework through image translation (UNet-IT) to expand rock castings by given porosity in relatively fewer datasets. Practical tests on carbonate rock images demonstrate that the proposed method can generate samples tailored to specific porosity requirements, which achieved a minimum porosity relative error of less than 1%. Compared with the unextended samples, the generated ones have completely different pore structures in terms of two-point probability, two-point cluster and lineal path functions. Furthermore, the elastic parameters of the generated images obtained through the finite element method (FEM) and practical logging data matched well, with an average relative error of approximately 9%. This indicates that the generated samples can be used as effective data to estimate fine rock physics templates and then improve inversion accuracy.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.