{"title":"Analytical Solution of One-Dimensional Keller-Segel Equations via New Homotopy Perturbation Method","authors":"Ali Slimani, Sadek Lakhlifa, A. Guesmia","doi":"10.37256/cm.5120242604","DOIUrl":null,"url":null,"abstract":"For solving a system of nonlinear partial differential equations (PDE) emerging in an attractor one-dimensional chemotaxis model, we used a relatively new analytical method called the new modified homotopy perturbation method (NMHPM). We use NMHPM for solving one-dimensional Keller-Segel models for different types. Some properties show biologically acceptable dependency on parameter values, and numerical solutions are provided. NMHPM’s stability and reduced computing time provide it with a broader range of applications. The algorithm provides analytical approximations for different types of Keller-Segel equations. Some numerical illustrations are given to show the efficiency of the algorithm.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120242604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For solving a system of nonlinear partial differential equations (PDE) emerging in an attractor one-dimensional chemotaxis model, we used a relatively new analytical method called the new modified homotopy perturbation method (NMHPM). We use NMHPM for solving one-dimensional Keller-Segel models for different types. Some properties show biologically acceptable dependency on parameter values, and numerical solutions are provided. NMHPM’s stability and reduced computing time provide it with a broader range of applications. The algorithm provides analytical approximations for different types of Keller-Segel equations. Some numerical illustrations are given to show the efficiency of the algorithm.