{"title":"DEFR-net: A decompose-enhance fourier residual network for fault diagnosis of rotating machine with high noise immunity","authors":"B. Du, Fujiang Zhang, Jun Guo, Xiang Sun","doi":"10.3233/jifs-233190","DOIUrl":null,"url":null,"abstract":"The actual operating environment of rotating mechanical device contains a large number of noisy interference sources, leading to complex components, strong coupling, and low signal to noise ratio for vibration. It becomes a big challenge for intelligent fault diagnosis from high-noise vibration signals. Thus, this paper proposes a new deep learning approach, namely decomposition-enhance Fourier residual network (DEFR-net), to achieve high noise immunity for vibration signal and learn effective features to discriminate between different types of rotational machine faults. In the proposed DEFR-net, a novel algorithm is proposed to explicitly model high-noise signals for noisy data filtering and effective feature enhancement based on a hard threshold decomposition function and muti-channel self-attention mechanism. Furthermore, it deeply integrates complementary analysis based on fast Fourier transform in the time-frequency domain and extends the breadth of network. The performance of the proposed model is verified by comparison with five state-of-the-art algorithms on two public datasets. Moreover, the noise experimental results show that the fault diagnosis accuracy is still 85.91% when the signal-to-noise-ratio reaches extreme noise of –8 dB. The results demonstrate that the proposed method is a valuable study for intelligent fault diagnosis of rotating machines in high-noise environments.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The actual operating environment of rotating mechanical device contains a large number of noisy interference sources, leading to complex components, strong coupling, and low signal to noise ratio for vibration. It becomes a big challenge for intelligent fault diagnosis from high-noise vibration signals. Thus, this paper proposes a new deep learning approach, namely decomposition-enhance Fourier residual network (DEFR-net), to achieve high noise immunity for vibration signal and learn effective features to discriminate between different types of rotational machine faults. In the proposed DEFR-net, a novel algorithm is proposed to explicitly model high-noise signals for noisy data filtering and effective feature enhancement based on a hard threshold decomposition function and muti-channel self-attention mechanism. Furthermore, it deeply integrates complementary analysis based on fast Fourier transform in the time-frequency domain and extends the breadth of network. The performance of the proposed model is verified by comparison with five state-of-the-art algorithms on two public datasets. Moreover, the noise experimental results show that the fault diagnosis accuracy is still 85.91% when the signal-to-noise-ratio reaches extreme noise of –8 dB. The results demonstrate that the proposed method is a valuable study for intelligent fault diagnosis of rotating machines in high-noise environments.