Using Computer Vision to Collect Information on Cycling and Hiking Trails Users

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2024-03-20 DOI:10.3390/fi16030104
Joaquim Miguel, Pedro Mendonça, Agnelo Quelhas, J. M. L. P. Caldeira, Vasco N. G. J. Soares
{"title":"Using Computer Vision to Collect Information on Cycling and Hiking Trails Users","authors":"Joaquim Miguel, Pedro Mendonça, Agnelo Quelhas, J. M. L. P. Caldeira, Vasco N. G. J. Soares","doi":"10.3390/fi16030104","DOIUrl":null,"url":null,"abstract":"Hiking and cycling have become popular activities for promoting well-being and physical activity. Portugal has been investing in hiking and cycling trail infrastructures to boost sustainable tourism. However, the lack of reliable data on the use of these trails means that the times of greatest affluence or the type of user who makes the most use of them are not recorded. These data are of the utmost importance to the managing bodies, with which they can adjust their actions to improve the management, maintenance, promotion, and use of the infrastructures for which they are responsible. The aim of this work is to present a review study on projects, techniques, and methods that can be used to identify and count the different types of users on these trails. The most promising computer vision techniques are identified and described: YOLOv3-Tiny, MobileNet-SSD V2, and FasterRCNN with ResNet-50. Their performance is evaluated and compared. The results observed can be very useful for proposing future prototypes. The challenges, future directions, and research opportunities are also discussed.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16030104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Hiking and cycling have become popular activities for promoting well-being and physical activity. Portugal has been investing in hiking and cycling trail infrastructures to boost sustainable tourism. However, the lack of reliable data on the use of these trails means that the times of greatest affluence or the type of user who makes the most use of them are not recorded. These data are of the utmost importance to the managing bodies, with which they can adjust their actions to improve the management, maintenance, promotion, and use of the infrastructures for which they are responsible. The aim of this work is to present a review study on projects, techniques, and methods that can be used to identify and count the different types of users on these trails. The most promising computer vision techniques are identified and described: YOLOv3-Tiny, MobileNet-SSD V2, and FasterRCNN with ResNet-50. Their performance is evaluated and compared. The results observed can be very useful for proposing future prototypes. The challenges, future directions, and research opportunities are also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用计算机视觉收集自行车道和远足径使用者的信息
徒步旅行和骑自行车已成为促进健康和体育锻炼的热门活动。葡萄牙一直在投资建设徒步旅行和自行车道基础设施,以促进可持续旅游业的发展。然而,由于缺乏关于这些路径使用情况的可靠数据,因此无法记录最富裕的时期或最常使用这些路径的用户类型。这些数据对管理机构至关重要,它们可以据此调整行动,改善其负责的基础设施的管理、维护、推广和使用。这项工作的目的是对可用于识别和统计这些路径上不同类型用户的项目、技术和方法进行回顾性研究。我们确定并介绍了最有前途的计算机视觉技术:YOLOv3-Tiny、MobileNet-SSD V2 和带有 ResNet-50 的 FasterRCNN。对它们的性能进行了评估和比较。观察到的结果对提出未来的原型非常有用。此外,还讨论了挑战、未来方向和研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Testing Stimulus Equivalence in Transformer-Based Agents Dynamic Fashion Video Synthesis from Static Imagery A Survey on Emerging Blockchain Technology Platforms for Securing the Internet of Things Cross-Domain Fake News Detection Using a Prompt-Based Approach Energy Efficiency and Load Optimization in Heterogeneous Networks through Dynamic Sleep Strategies: A Constraint-Based Optimization Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1