Anthony W. Lyza, Matthew D. Flournoy, A. A. Alford
{"title":"Comparison of Tornado Damage Characteristics to Low-Altitude WSR-88D Radar Observations and Implications for Tornado Intensity Estimation","authors":"Anthony W. Lyza, Matthew D. Flournoy, A. A. Alford","doi":"10.1175/mwr-d-23-0242.1","DOIUrl":null,"url":null,"abstract":"\nGiven the obvious difficulties in directly sampling tornadic wind fields, ongoing work continues to improve estimates of near-ground wind speeds in tornadoes. This study builds upon a recently proposed empirical relationship between radar-observed velocities in the lowest 150 m AGL and the theoretical peak 15-m AGL wind speed. We create and analyze a dataset of 194 velocity observations within tornadoes in the lowest 150 m AGL. These observations are drawn from 105 individual tornadoes that occurred across a diverse range of EF-scale ratings (EF0–4), convective modes (discrete supercell and quasi-linear convective system), geographical regions, and housing-unit densities (HUD). Comparing the radar-estimated and damage-estimated tornado wind speeds, and corresponding EF- and F-scale ratings, is the primary focus of the ensuing analysis. Consistent with recent work, damage-estimated tornado wind speeds tend to be lower than radar-estimated near-surface wind speeds, especially for stronger tornadoes. Damage- and radar-estimated wind speed differences are not strongly related to the availability of damage indicators (as measured by HUD). While some relationship exists—particularly underestimates of peak wind speeds for strong–violent tornadoes in low HUD areas—the tendency of radar-based strong/violent tornado intensity estimates to be meaningfully higher than EF-scale-based damage estimates exists across the HUD spectrum. The legacy F-scale wind speed ranges may ultimately provide a better estimate of peak tornado wind speeds at 10–15 m AGL for strong–violent tornadoes and a better damage-based intensity rating for all tornadoes. These results are contextualized with regards to ongoing community efforts to improve tornado intensity estimation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"107 9‐12","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0242.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Given the obvious difficulties in directly sampling tornadic wind fields, ongoing work continues to improve estimates of near-ground wind speeds in tornadoes. This study builds upon a recently proposed empirical relationship between radar-observed velocities in the lowest 150 m AGL and the theoretical peak 15-m AGL wind speed. We create and analyze a dataset of 194 velocity observations within tornadoes in the lowest 150 m AGL. These observations are drawn from 105 individual tornadoes that occurred across a diverse range of EF-scale ratings (EF0–4), convective modes (discrete supercell and quasi-linear convective system), geographical regions, and housing-unit densities (HUD). Comparing the radar-estimated and damage-estimated tornado wind speeds, and corresponding EF- and F-scale ratings, is the primary focus of the ensuing analysis. Consistent with recent work, damage-estimated tornado wind speeds tend to be lower than radar-estimated near-surface wind speeds, especially for stronger tornadoes. Damage- and radar-estimated wind speed differences are not strongly related to the availability of damage indicators (as measured by HUD). While some relationship exists—particularly underestimates of peak wind speeds for strong–violent tornadoes in low HUD areas—the tendency of radar-based strong/violent tornado intensity estimates to be meaningfully higher than EF-scale-based damage estimates exists across the HUD spectrum. The legacy F-scale wind speed ranges may ultimately provide a better estimate of peak tornado wind speeds at 10–15 m AGL for strong–violent tornadoes and a better damage-based intensity rating for all tornadoes. These results are contextualized with regards to ongoing community efforts to improve tornado intensity estimation.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.