The effect of water quality change on copper flotation

Claudio Acuña, Camila Aedo, C. Leiva, Víctor Flores
{"title":"The effect of water quality change on copper flotation","authors":"Claudio Acuña, Camila Aedo, C. Leiva, Víctor Flores","doi":"10.37190/ppmp/186190","DOIUrl":null,"url":null,"abstract":"Given the significant consumption and future demand for water resources, this paper intends to find the conditions for using a flotation process with different water quality. One of the alternatives is using water under secondary treatment with industrial water mixtures to partly recycle domestic wastewater and maximize metallurgical benefits. Results show that using wastewater (only with secondary treatment) in flotation is detrimental to copper recovery. However, molybdenum recovery is significantly improved. For mixtures with 50 [%] wastewater, 50 [ppm] frother, 20 [ppm] collector, and pH 10, copper recovery decrease amounts to 0.4 [%], while molybdenum shows a 2.4 [%] recovery increase. In addition, copper concentrate grade decreases by 1.4 [%], while molybdenum grade remains. Therefore, using wastewater is viable, particularly in the case of molybdenum. So, this study proposes using of water mixtures in the copper depression stage to improve molybdenum recovery.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ppmp/186190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given the significant consumption and future demand for water resources, this paper intends to find the conditions for using a flotation process with different water quality. One of the alternatives is using water under secondary treatment with industrial water mixtures to partly recycle domestic wastewater and maximize metallurgical benefits. Results show that using wastewater (only with secondary treatment) in flotation is detrimental to copper recovery. However, molybdenum recovery is significantly improved. For mixtures with 50 [%] wastewater, 50 [ppm] frother, 20 [ppm] collector, and pH 10, copper recovery decrease amounts to 0.4 [%], while molybdenum shows a 2.4 [%] recovery increase. In addition, copper concentrate grade decreases by 1.4 [%], while molybdenum grade remains. Therefore, using wastewater is viable, particularly in the case of molybdenum. So, this study proposes using of water mixtures in the copper depression stage to improve molybdenum recovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水质变化对铜浮选的影响
鉴于水资源的大量消耗和未来需求,本文旨在寻找使用不同水质的浮选工艺的条件。替代方案之一是使用经过二级处理的水与工业用水混合物,以部分回收利用生活废水,最大限度地提高冶金效益。结果表明,在浮选过程中使用废水(仅二级处理)不利于铜的回收。然而,钼的回收率却有显著提高。在废水浓度为 50 [%]、起泡剂浓度为 50 [ppm]、捕收剂浓度为 20 [ppm] 和 pH 值为 10 的混合物中,铜的回收率降低了 0.4 [%],而钼的回收率则提高了 2.4 [%]。此外,铜精矿的品位降低了 1.4 [%],而钼的品位保持不变。因此,使用废水是可行的,特别是在钼的情况下。因此,本研究建议在铜压制阶段使用水混合物来提高钼回收率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of microbubble dose in combined microflotation of fine particles The inhibition mechanism of esterified starch on flotation separation of fluorite and calcite Enhancement of ilmenite magnetic properties by oxidation roasting and magnetic separation Adaptive control method and experimental study of cone crusher based on aggregate online detection Effects of Ca2+/Mg2+ ions in recycled water on the reverse flotation properties of iron oxides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1