greeks: Sensitivities of Prices of Financial Options and Implied Volatilities

Anselm Hudde
{"title":"greeks: Sensitivities of Prices of Financial Options\nand Implied Volatilities","authors":"Anselm Hudde","doi":"10.21105/joss.05987","DOIUrl":null,"url":null,"abstract":"Summary The greeks R package leverages the Black-Scholes model and more general jump diffusion models to compute sensitivities of financial option prices for European, geometric and arithmetic Asian, as well as American options, with various payoff functions (for a treatment see Hull (2022), and Angus (1999) for the case of geometric Asian options). The Black-Scholes model is the standard approach for modelling stock prices, while jump diffusion models aim to offer a more realistic representation of market movements, see Kou (2002). Furthermore, methods to compute implied volatilities are provided for a wide range of option types and custom payoff functions. Classical formulas are implemented for European options in the Black-Scholes model, as is presented in Hull (2022). In the case of Asian options, Malliavin Monte Carlo Greeks are implemented, see Hudde & Rüschendorf (2023), or Lyuu et al. (2019). For American options, the Binomial Tree method is implemented, as is presented in Hull (2022). greeks includes a Shiny app to interactively plot the results.","PeriodicalId":503081,"journal":{"name":"Journal of Open Source Software","volume":"6 s2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Source Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/joss.05987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary The greeks R package leverages the Black-Scholes model and more general jump diffusion models to compute sensitivities of financial option prices for European, geometric and arithmetic Asian, as well as American options, with various payoff functions (for a treatment see Hull (2022), and Angus (1999) for the case of geometric Asian options). The Black-Scholes model is the standard approach for modelling stock prices, while jump diffusion models aim to offer a more realistic representation of market movements, see Kou (2002). Furthermore, methods to compute implied volatilities are provided for a wide range of option types and custom payoff functions. Classical formulas are implemented for European options in the Black-Scholes model, as is presented in Hull (2022). In the case of Asian options, Malliavin Monte Carlo Greeks are implemented, see Hudde & Rüschendorf (2023), or Lyuu et al. (2019). For American options, the Binomial Tree method is implemented, as is presented in Hull (2022). greeks includes a Shiny app to interactively plot the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
希腊:金融期权价格的敏感性和隐含波动率
摘要 greeks R 软件包利用布莱克-斯科尔斯(Black-Scholes)模型和更一般的跃迁扩散模型来 计算具有不同报酬函数的欧式、几何和算术式亚洲以及美式期权的金融期权价格的敏感性(有 关处理方法见 Hull(2022)和 Angus(1999)对几何式亚洲期权的处理方法)。布莱克-斯科尔斯(Black-Scholes)模型是股票价格建模的标准方法,而跃迁扩散模型旨在更真实地反映市场走势,见 Kou(2002)。此外,还为多种期权类型和自定义报酬函数提供了计算隐含波动率的方法。对于 Black-Scholes 模型中的欧式期权,采用了 Hull(2022)中的经典公式。对于亚洲期权,则采用马利亚文蒙特卡罗希腊公式,参见 Hudde & Rüschendorf (2023) 或 Lyuu 等人 (2019)。对于美式期权,则采用二叉树方法,见 Hull(2022)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
dropout: an R Package for Addressing Dropouts, Missing Values, and Sectional Challenges in Survey Data Analysis fABBA: A Python library for the fast symbolic approximation of time series simChef: High-quality data science simulations in R TDApplied: An R package for machine learning and inference with persistence diagrams Mold: a LAMMPS package to compute interfacial free energies and nucleation rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1