{"title":"Liquid-liquid flow pattern and mass transfer in a rotating millimeter channel reactor","authors":"Liang Zheng, Yu-Hui Qi, Hai-Long Liao, Hai-Kui Zou, Ouyang Yi, Yong Luo, Jian-Feng Chen","doi":"10.1515/cppm-2023-0049","DOIUrl":null,"url":null,"abstract":"\n Currently, microchannels are widely used in liquid-liquid heterogeneous mass transfer systems due to its excellent mass transfer performance. However, because of the passive mixing principle of traditional microchannels, the improvement of mass transfer performance has a bottleneck. This work proposes a novel rotating millimeter channel reactor (RMCR), capable of achieving liquid-liquid heterogeneous mass transfer enhance by centrifugal force. Three typical flow patterns of slug flow, parallel-droplet flow, and parallel flow in the RMCR were observed by high-speed photography technology. The volumetric mass transfer coefficient (K\n O\n a) of the RMCR increased with the increase of the total volumetric flow rate and rotational speed (N) increased. Compared with N = 0 r/min, the K\n O\n a of the RMCR increases by 61.5 % at 200 r/min, ranging from 0.013 to 0.021 s−1. The RMCR proposed in this work is expected to be applied to the liquid-liquid heterogeneous mass transfer system with high processing capacity and easy plugging.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, microchannels are widely used in liquid-liquid heterogeneous mass transfer systems due to its excellent mass transfer performance. However, because of the passive mixing principle of traditional microchannels, the improvement of mass transfer performance has a bottleneck. This work proposes a novel rotating millimeter channel reactor (RMCR), capable of achieving liquid-liquid heterogeneous mass transfer enhance by centrifugal force. Three typical flow patterns of slug flow, parallel-droplet flow, and parallel flow in the RMCR were observed by high-speed photography technology. The volumetric mass transfer coefficient (K
O
a) of the RMCR increased with the increase of the total volumetric flow rate and rotational speed (N) increased. Compared with N = 0 r/min, the K
O
a of the RMCR increases by 61.5 % at 200 r/min, ranging from 0.013 to 0.021 s−1. The RMCR proposed in this work is expected to be applied to the liquid-liquid heterogeneous mass transfer system with high processing capacity and easy plugging.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.