Jumping droplets

Droplet Pub Date : 2024-03-15 DOI:10.1002/dro2.105
Jonathan B. Boreyko
{"title":"Jumping droplets","authors":"Jonathan B. Boreyko","doi":"10.1002/dro2.105","DOIUrl":null,"url":null,"abstract":"<p>When microdroplets with quasi-spherical contact angles coalesce together on a low-adhesion substrate, the capillary-inertial expansion of the liquid bridge induces a dramatic out-of-plane jumping event due to symmetry breaking. From the onset of merging, droplet jumping initiates after a capillary-inertial time scale of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>t</mi>\n \n <mrow>\n <mspace></mspace>\n \n <mtext>ci</mtext>\n </mrow>\n </msub>\n \n <mo>∼</mo>\n \n <mn>1</mn>\n \n <mo>–</mo>\n <mspace></mspace>\n \n <mn>100</mn>\n </mrow>\n </mrow>\n <annotation> ${t}_{\\text{ci}}\\sim 1\\mbox{--}\\,100$</annotation>\n </semantics></math> μs with characteristic jumping speeds of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mi>j</mi>\n </msub>\n \n <mo>∼</mo>\n \n <mn>0.1</mn>\n </mrow>\n </mrow>\n <annotation> ${v}_{{\\rm{j}}}\\sim 0.1$</annotation>\n </semantics></math> m/s. This coalescence-induced jumping-droplet effect is most commonly observed among a population of growing dew droplets on a superhydrophobic condenser, but can also occur by colliding deposited droplets together or during droplet sliding on fog harvesters. In this review, we cover the historical development of capillary-inertial jumping droplets, summarize the decade-long effort to rationalize the ultra-low energy conversion efficiency and critical droplet size of the phenomenon, and then present 15 variations on a theme of jumping. Capillary-inertial jumping droplets are not only a visceral illustration of the surprising power of surface tension at the microscale but they also have the potential to enhance phase-change heat transfer, enable self-cleaning surfaces, combat frost formation, harvest energy, and govern the rate of disease spread for wheat crops.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.105","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When microdroplets with quasi-spherical contact angles coalesce together on a low-adhesion substrate, the capillary-inertial expansion of the liquid bridge induces a dramatic out-of-plane jumping event due to symmetry breaking. From the onset of merging, droplet jumping initiates after a capillary-inertial time scale of t ci 1 100 ${t}_{\text{ci}}\sim 1\mbox{--}\,100$  μs with characteristic jumping speeds of order v j 0.1 ${v}_{{\rm{j}}}\sim 0.1$  m/s. This coalescence-induced jumping-droplet effect is most commonly observed among a population of growing dew droplets on a superhydrophobic condenser, but can also occur by colliding deposited droplets together or during droplet sliding on fog harvesters. In this review, we cover the historical development of capillary-inertial jumping droplets, summarize the decade-long effort to rationalize the ultra-low energy conversion efficiency and critical droplet size of the phenomenon, and then present 15 variations on a theme of jumping. Capillary-inertial jumping droplets are not only a visceral illustration of the surprising power of surface tension at the microscale but they also have the potential to enhance phase-change heat transfer, enable self-cleaning surfaces, combat frost formation, harvest energy, and govern the rate of disease spread for wheat crops.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跳跃的水滴
当具有准球形接触角的微液滴在低附着力基底上聚合在一起时,液桥的毛细管惯性膨胀会因对称性破坏而引发剧烈的平面外跃迁事件。从合并开始,液滴在毛细管惯性时间尺度为 μs 之后开始跃迁,其特征跃迁速度为 m/s 级。在超疏水冷凝器上不断增长的露珠群中,最常观察到这种凝聚诱发的跳跃液滴效应,但沉积的液滴碰撞在一起或在雾气收集器上的液滴滑动过程中也会发生这种效应。在这篇综述中,我们将介绍毛细管惯性跳跃液滴的历史发展,总结长达十年之久的努力,以合理解释这种现象的超低能量转换效率和临界液滴大小,然后介绍跳跃主题的 15 种变体。毛细管惯性跳跃液滴不仅直观地展示了表面张力在微观尺度上的惊人威力,而且还具有增强相变传热、实现表面自清洁、防止霜冻形成、收获能源以及控制小麦作物病害传播速度的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Front Cover, Volume 3, Number 4, October 2024 Inside Back Cover, Volume 3, Number 4, October 2024 Back Cover, Volume 3, Number 4, October 2024 Inside Front Cover, Volume 3, Number 4, October 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1