{"title":"The efficacy of spatio-temporal predictors in forecasting the risk of Cydia nigricana infestation","authors":"Natalia Riemer, Manuela Schieler, Helmut Saucke","doi":"10.1111/eea.13430","DOIUrl":null,"url":null,"abstract":"<p>The ability to estimate the risk of pest infestation can help farmers to reduce pesticide application and provide guidance that would result in better management decisions. This study tested whether different combinations of spatial and temporal risk factors may be used to predict the damage potential of pea moth, <i>Cydia nigricana</i> Fabricius (Lepidoptera: Tortricidae), a major pest in field pea (<i>Pisum sativum</i> L., Fabaceae). Over four consecutive years, the abundance of pea moth was monitored by placing pheromone traps at various field pea-cultivation sites. We also assessed the phenological development stages and the percentage of damaged seeds per 100 pods collected from each growing pea field in a region of approximately 30 km in diameter. The study found the significant infestation risk indicators to be the time of flowering, the date on which male pea moths are first detected in the monitoring traps and the minimum distance to pea fields that were planted and harvested in the previous growing season. The combination of all three factors using a general additive model approach yielded the best results. The model proposed by this study accurately discriminated between low-infestation and high-infestation fields in 95% of cases.</p>","PeriodicalId":11741,"journal":{"name":"Entomologia Experimentalis et Applicata","volume":"172 7","pages":"636-645"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eea.13430","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entomologia Experimentalis et Applicata","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eea.13430","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to estimate the risk of pest infestation can help farmers to reduce pesticide application and provide guidance that would result in better management decisions. This study tested whether different combinations of spatial and temporal risk factors may be used to predict the damage potential of pea moth, Cydia nigricana Fabricius (Lepidoptera: Tortricidae), a major pest in field pea (Pisum sativum L., Fabaceae). Over four consecutive years, the abundance of pea moth was monitored by placing pheromone traps at various field pea-cultivation sites. We also assessed the phenological development stages and the percentage of damaged seeds per 100 pods collected from each growing pea field in a region of approximately 30 km in diameter. The study found the significant infestation risk indicators to be the time of flowering, the date on which male pea moths are first detected in the monitoring traps and the minimum distance to pea fields that were planted and harvested in the previous growing season. The combination of all three factors using a general additive model approach yielded the best results. The model proposed by this study accurately discriminated between low-infestation and high-infestation fields in 95% of cases.
期刊介绍:
Entomologia Experimentalis et Applicata publishes top quality original research papers in the fields of experimental biology and ecology of insects and other terrestrial arthropods, with both pure and applied scopes. Mini-reviews, technical notes and media reviews are also published. Although the scope of the journal covers the entire scientific field of entomology, it has established itself as the preferred medium for the communication of results in the areas of the physiological, ecological, and morphological inter-relations between phytophagous arthropods and their food plants, their parasitoids, predators, and pathogens. Examples of specific areas that are covered frequently are:
host-plant selection mechanisms
chemical and sensory ecology and infochemicals
parasitoid-host interactions
behavioural ecology
biosystematics
(co-)evolution
migration and dispersal
population modelling
sampling strategies
developmental and behavioural responses to photoperiod and temperature
nutrition
natural and transgenic plant resistance.