{"title":"Effects of refractive index mismatch between sample\nand immersion medium in line-field confocal optical\ncoherence tomography","authors":"Arnaud Dubois","doi":"10.1051/jeos/2024010","DOIUrl":null,"url":null,"abstract":"Line-field confocal optical coherence tomography (LC-OCT) is an optical technique based on low-coherence interference microscopy with line illumination, designed for tomographic imaging of semi-transparent samples with micrometer-scale spatial resolution. A theoretical model of the signal acquired in LC-OCT is presented. The model shows that a refractive index mismatch between the sample and the immersion medium causes a dissociation of the coherence plane and the focal plane, leading to a decrease in the signal amplitude and a degradation of the image’s lateral resolution. Measurements are performed to validate and illustrate the theoretical predictions. A mathematical condition linking various experimental parameters is established to ensure that the degradation of image quality is negligible. This condition is tested experimentally by imaging a phantom. It is verified theoretically in the case of skin imaging, using experimental parameters corresponding to those of the commercially available LC-OCT device.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2024010","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Line-field confocal optical coherence tomography (LC-OCT) is an optical technique based on low-coherence interference microscopy with line illumination, designed for tomographic imaging of semi-transparent samples with micrometer-scale spatial resolution. A theoretical model of the signal acquired in LC-OCT is presented. The model shows that a refractive index mismatch between the sample and the immersion medium causes a dissociation of the coherence plane and the focal plane, leading to a decrease in the signal amplitude and a degradation of the image’s lateral resolution. Measurements are performed to validate and illustrate the theoretical predictions. A mathematical condition linking various experimental parameters is established to ensure that the degradation of image quality is negligible. This condition is tested experimentally by imaging a phantom. It is verified theoretically in the case of skin imaging, using experimental parameters corresponding to those of the commercially available LC-OCT device.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.