Chengfei Ma, Xiaolei Yang, Heng Lu, Siyuan He, Yongshan Liu
{"title":"Federated aggregation method based on cosine similarity approximation Shapley value method contribution degree","authors":"Chengfei Ma, Xiaolei Yang, Heng Lu, Siyuan He, Yongshan Liu","doi":"10.3233/jifs-236977","DOIUrl":null,"url":null,"abstract":"When calculating participants’ contribution to federated learning, addressing issues such as the inability to collect complete test data and the impact of malicious and dishonest participants on the global model is necessary. This article proposes a federated aggregation method based on cosine similarity approximation Shapley value method contribution degree. Firstly, a participant contribution calculation model combining cosine similarity and the approximate Shapley value method was designed to obtain the contribution values of the participants. Then, based on the calculation model of participant contribution, a federated aggregation algorithm is proposed, and the aggregation weights of each participant in the federated aggregation process are calculated by their contribution values. Finally, the gradient parameters of the global model were determined and propagated to all participants to update the local model. Experiments were conducted under different privacy protection parameters, data noise parameters, and the proportion of malicious participants. The results showed that the accuracy of the algorithm model can be maintained at 90% and 65% on the MNIST and CIFAR-10 datasets, respectively. This method can reasonably and accurately calculate the contribution of participants without a complete test dataset, reducing computational costs to a certain extent and can resist the influence of the aforementioned participants.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-236977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When calculating participants’ contribution to federated learning, addressing issues such as the inability to collect complete test data and the impact of malicious and dishonest participants on the global model is necessary. This article proposes a federated aggregation method based on cosine similarity approximation Shapley value method contribution degree. Firstly, a participant contribution calculation model combining cosine similarity and the approximate Shapley value method was designed to obtain the contribution values of the participants. Then, based on the calculation model of participant contribution, a federated aggregation algorithm is proposed, and the aggregation weights of each participant in the federated aggregation process are calculated by their contribution values. Finally, the gradient parameters of the global model were determined and propagated to all participants to update the local model. Experiments were conducted under different privacy protection parameters, data noise parameters, and the proportion of malicious participants. The results showed that the accuracy of the algorithm model can be maintained at 90% and 65% on the MNIST and CIFAR-10 datasets, respectively. This method can reasonably and accurately calculate the contribution of participants without a complete test dataset, reducing computational costs to a certain extent and can resist the influence of the aforementioned participants.