Incredible electrochemical performance of ZnWO4/PANI as a favorable electrode material for supercapacitor

Sastipriyaa Padmanaaban, Yadhukrishnan Kakkad Vasudevan, Raja Viswanathan, Sujin P. Jose, Gopinathan Chellasamy
{"title":"Incredible electrochemical performance of ZnWO4/PANI as a favorable electrode material for supercapacitor","authors":"Sastipriyaa Padmanaaban, Yadhukrishnan Kakkad Vasudevan, Raja Viswanathan, Sujin P. Jose, Gopinathan Chellasamy","doi":"10.1515/zpch-2023-0523","DOIUrl":null,"url":null,"abstract":"\n ZnWO4/PANI was synthesized through the in-situ polymerization technique, revealing the wolframite monoclinic phase in its XRD pattern. The distinctive morphology of ZnWO4/PANI observed in the SEM image, exhibits enhanced redox sites, thereby improving its electrochemical performance. Cyclic voltammetry and galvanostatic charge-discharge studies confirm the pseudocapacitive behavior of ZnWO4/PANI, showcasing an impressive capacitance of 908 F g−1 at 1 A g−1 in 1 M KOH, along with a capacitive retention of 94 % over 5000 cycles. The robust conductivity of PANI and the narrow ion transport channels along with multiple oxidation states of ZnWO4 contribute to the higher specific capacity, guiding the movement of electrons and ions. This study suggests a synergistic effect in ZnWO4/PANI, resulting in remarkable electrochemical performance enhancements.","PeriodicalId":506520,"journal":{"name":"Zeitschrift für Physikalische Chemie","volume":"19 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Physikalische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zpch-2023-0523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ZnWO4/PANI was synthesized through the in-situ polymerization technique, revealing the wolframite monoclinic phase in its XRD pattern. The distinctive morphology of ZnWO4/PANI observed in the SEM image, exhibits enhanced redox sites, thereby improving its electrochemical performance. Cyclic voltammetry and galvanostatic charge-discharge studies confirm the pseudocapacitive behavior of ZnWO4/PANI, showcasing an impressive capacitance of 908 F g−1 at 1 A g−1 in 1 M KOH, along with a capacitive retention of 94 % over 5000 cycles. The robust conductivity of PANI and the narrow ion transport channels along with multiple oxidation states of ZnWO4 contribute to the higher specific capacity, guiding the movement of electrons and ions. This study suggests a synergistic effect in ZnWO4/PANI, resulting in remarkable electrochemical performance enhancements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为超级电容器电极材料的 ZnWO4/PANI 具有令人难以置信的电化学性能
ZnWO4/PANI 是通过原位聚合技术合成的,在其 XRD 图谱中显示出黑钨矿单斜相。在扫描电镜图像中观察到的 ZnWO4/PANI 的独特形貌显示出增强的氧化还原位点,从而提高了其电化学性能。循环伏安法和电静态充放电研究证实了 ZnWO4/PANI 的伪电容行为,在 1 M KOH 溶液中,1 A g-1 时的电容值为 908 F g-1,5000 次循环后的电容保持率为 94%。PANI 的强导电性和 ZnWO4 的窄离子传输通道以及多种氧化态有助于提高比容量,引导电子和离子的运动。这项研究表明,ZnWO4/PANI 具有协同效应,可显著提高电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrothermally synthesized transition metal doped ZnO nanorods for dye degradation and antibacterial activity Cellulose acetate sheet supported gold nanoparticles for the catalytic reduction of toxic organic pollutants Ab initio study of surfaces of lead and tin based metal halide perovskite structures Influence of yttrium doping on the photocatalytic behaviour of lanthanum titanate: a material for water treatment Reversible photoluminescence shift in imidazolium l-tartrate crystal triggered by acoustic shock waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1