Calcium oscillations in HEK293 cells lacking SOCE suggest the existence of a balanced regulation of IP3 production and degradation

Clara Octors, Ryan E. Yoast, Scott M. Emrich, Mohamed Trebak, James Sneyd
{"title":"Calcium oscillations in HEK293 cells lacking SOCE suggest the existence of a balanced regulation of IP3 production and degradation","authors":"Clara Octors, Ryan E. Yoast, Scott M. Emrich, Mohamed Trebak, James Sneyd","doi":"10.3389/fsysb.2024.1343006","DOIUrl":null,"url":null,"abstract":"The concentration of free cytosolic Ca2+ is a critical second messenger in almost every cell type, with the signal often being carried by the period of oscillations, or spikes, in the cytosolic Ca2+ concentration. We have previously studied how Ca2+ influx across the plasma membrane affects the period and shape of Ca2+ oscillations in HEK293 cells. However, our theoretical work was unable to explain how the shape of Ca2+ oscillations could change qualitatively, from thin spikes to broad oscillations, during the course of a single time series. Such qualitative changes in oscillation shape are a common feature of HEK293 cells in which STIM1 and 2 have been knocked out. Here, we present an extended version of our earlier model that suggests that such time-dependent qualitative changes in oscillation shape might be the result of balanced positive and negative feedback from Ca2+ to the production and degradation of inositol trisphosphate.","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":"8 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2024.1343006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The concentration of free cytosolic Ca2+ is a critical second messenger in almost every cell type, with the signal often being carried by the period of oscillations, or spikes, in the cytosolic Ca2+ concentration. We have previously studied how Ca2+ influx across the plasma membrane affects the period and shape of Ca2+ oscillations in HEK293 cells. However, our theoretical work was unable to explain how the shape of Ca2+ oscillations could change qualitatively, from thin spikes to broad oscillations, during the course of a single time series. Such qualitative changes in oscillation shape are a common feature of HEK293 cells in which STIM1 and 2 have been knocked out. Here, we present an extended version of our earlier model that suggests that such time-dependent qualitative changes in oscillation shape might be the result of balanced positive and negative feedback from Ca2+ to the production and degradation of inositol trisphosphate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺乏 SOCE 的 HEK293 细胞中的钙振荡表明 IP3 的产生和降解存在平衡调控
细胞膜游离 Ca2+ 的浓度是几乎所有细胞类型中的关键第二信使,其信号通常由细胞膜 Ca2+ 浓度的振荡周期或尖峰传递。我们以前曾研究过质膜上的 Ca2+ 流入如何影响 HEK293 细胞中 Ca2+ 振荡的周期和形状。然而,我们的理论工作无法解释 Ca2+ 振荡的形状如何在单个时间序列的过程中发生质的变化,从细尖峰到宽振荡。振荡形状的这种质变是 STIM1 和 2 被敲除的 HEK293 细胞的共同特征。在这里,我们提出了一个早期模型的扩展版本,该模型认为振荡形状的这种随时间变化的质变可能是 Ca2+ 对三磷酸肌醇的产生和降解的正负反馈平衡的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transporter annotations are holding up progress in metabolic modeling Life’s building blocks: the modular path to multiscale complexity Coupling quantitative systems pharmacology modelling to machine learning and artificial intelligence for drug development: its pAIns and gAIns Predicting chronic responses to calcium channel blockade with a virtual population of African Americans with hypertensive chronic kidney disease Building an Adverse Outcome Pathway network for COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1