Iterated Crank–Nicolson Method for Peridynamic Models

Dynamics Pub Date : 2024-03-15 DOI:10.3390/dynamics4010011
Jinjie Liu, Samuel Appiah-Adjei, M. Brio
{"title":"Iterated Crank–Nicolson Method for Peridynamic Models","authors":"Jinjie Liu, Samuel Appiah-Adjei, M. Brio","doi":"10.3390/dynamics4010011","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the iterated Crank–Nicolson (ICN) algorithm for the one-dimensional peridynamic model. The peridynamic equation of motion is an integro-differential equation that governs structural deformations such as fractures. The ICN method was originally developed for hyperbolic advection equations. In peridynamics, we apply the ICN algorithm for temporal discretization and the midpoint quadrature method for spatial integration. Several numerical tests are carried out to evaluate the performance of the ICN method. In general, the ICN method demonstrates second-order accuracy, consistent with the Störmer–Verlet (SV) method. When the weight is 1/3, the ICN method behaves as a third-order Runge–Kutta method and maintains strong stability-preserving (SSP) properties for linear problems. Regarding energy conservation, the ICN algorithm maintains at least second-order accuracy, making it superior to the SV method, which converges linearly. Furthermore, selecting a weight of 0.25 results in fourth-order superconvergent energy variation for the ICN method. In this case, the ICN method exhibits energy variation similar to that of the fourth-order Runge–Kutta method but operates approximately 20% faster. Higher-order convergence for energy can also be achieved by increasing the number of iterations in the ICN method.","PeriodicalId":507568,"journal":{"name":"Dynamics","volume":"4 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics4010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore the iterated Crank–Nicolson (ICN) algorithm for the one-dimensional peridynamic model. The peridynamic equation of motion is an integro-differential equation that governs structural deformations such as fractures. The ICN method was originally developed for hyperbolic advection equations. In peridynamics, we apply the ICN algorithm for temporal discretization and the midpoint quadrature method for spatial integration. Several numerical tests are carried out to evaluate the performance of the ICN method. In general, the ICN method demonstrates second-order accuracy, consistent with the Störmer–Verlet (SV) method. When the weight is 1/3, the ICN method behaves as a third-order Runge–Kutta method and maintains strong stability-preserving (SSP) properties for linear problems. Regarding energy conservation, the ICN algorithm maintains at least second-order accuracy, making it superior to the SV method, which converges linearly. Furthermore, selecting a weight of 0.25 results in fourth-order superconvergent energy variation for the ICN method. In this case, the ICN method exhibits energy variation similar to that of the fourth-order Runge–Kutta method but operates approximately 20% faster. Higher-order convergence for energy can also be achieved by increasing the number of iterations in the ICN method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于周向动力学模型的迭代曲柄-尼科尔森法
在本文中,我们探讨了一维周向动力学模型的迭代 Crank-Nicolson 算法(ICN)。围动力学运动方程是一个控制断裂等结构变形的积分微分方程。ICN 方法最初是针对双曲平流方程开发的。在周动力学中,我们采用 ICN 算法进行时间离散化,并采用中点正交法进行空间积分。为了评估 ICN 方法的性能,我们进行了几次数值测试。总体而言,ICN 方法与 Störmer-Verlet (SV) 方法一致,表现出二阶精度。当权重为 1/3 时,ICN 方法表现为三阶 Runge-Kutta 方法,并对线性问题保持较强的稳定性(SSP)。在能量守恒方面,ICN 算法至少保持了二阶精度,这使其优于线性收敛的 SV 方法。此外,选择 0.25 的权重会使 ICN 方法产生四阶超收敛能量变化。在这种情况下,ICN 方法的能量变化与四阶 Runge-Kutta 方法相似,但运行速度快了约 20%。通过增加 ICN 方法的迭代次数,也可以实现能量的高阶收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
A Fluid–Structure Interaction Analysis to Investigate the Influence of Magnetic Fields on Plaque Growth in Stenotic Bifurcated Arteries Vertical and Lateral Dynamics of 4L Freight Bogie Theoretical Model of Structural Phase Transitions in Al-Cu Solid Solutions under Dynamic Loading Using Machine Learning An Optimum Design for a Fast-Response Solenoid Valve: Application to a Limaçon Gas Expander Artificial Intelligence Modeling of the Heterogeneous Gas Quenching Process for Steel Batches Based on Numerical Simulations and Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1