{"title":"The Rate Capability Performance of High-Areal-Capacity Water-Based NMC811 Electrodes: The Role of Binders and Current Collectors","authors":"Yuri Surace, Marcus Jahn, D. Cupid","doi":"10.3390/batteries10030100","DOIUrl":null,"url":null,"abstract":"The aqueous processing of cathode materials for lithium-ion batteries (LIBs) has both environmental and cost benefits. However, high-loading, water-based electrodes from the layered oxides (e.g., NMC) typically exhibit worse electrochemical performance than NMP-based electrodes. In this work, primary, binary, and ternary binder mixtures of aqueous binders such as CMC, PAA, PEO, SBR, and Na alginate, in combination with bare and C-coated Al current collectors, were explored, aiming to improve the rate capability performance of NMC811 electrodes with high areal capacity (≥4 mAh cm−2) and low binder content (3 wt.%). Electrodes with a ternary binder composition (CMC:PAA:SBR) have the best performance with bare Al current collectors, attaining a specific capacity of 150 mAh g−1 at 1C. Using carbon-coated Al current collectors results in improved performance for both water- and NMP-based electrodes. This is further accentuated for Na-Alg and CMC:PAA binder compositions. These electrodes show specific capacities of 170 and 80 mAh g−1 at 1C and 2C, respectively. Although the specific capacities at 1C are comparable to those for NMP-PVDF electrodes, they are approximately 50% higher at the 2C rate. This study aims to contribute to the development of sustainably processed NMC electrodes for high energy density LIBs using water as solvent.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"11 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries10030100","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aqueous processing of cathode materials for lithium-ion batteries (LIBs) has both environmental and cost benefits. However, high-loading, water-based electrodes from the layered oxides (e.g., NMC) typically exhibit worse electrochemical performance than NMP-based electrodes. In this work, primary, binary, and ternary binder mixtures of aqueous binders such as CMC, PAA, PEO, SBR, and Na alginate, in combination with bare and C-coated Al current collectors, were explored, aiming to improve the rate capability performance of NMC811 electrodes with high areal capacity (≥4 mAh cm−2) and low binder content (3 wt.%). Electrodes with a ternary binder composition (CMC:PAA:SBR) have the best performance with bare Al current collectors, attaining a specific capacity of 150 mAh g−1 at 1C. Using carbon-coated Al current collectors results in improved performance for both water- and NMP-based electrodes. This is further accentuated for Na-Alg and CMC:PAA binder compositions. These electrodes show specific capacities of 170 and 80 mAh g−1 at 1C and 2C, respectively. Although the specific capacities at 1C are comparable to those for NMP-PVDF electrodes, they are approximately 50% higher at the 2C rate. This study aims to contribute to the development of sustainably processed NMC electrodes for high energy density LIBs using water as solvent.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.