A new energy vehicle battery supplier selection using SWARA-MEREC-MARCOS approach under probabilistic triangular intuitionistic hesitant fuzzy environment

Jianping Fan, M. Chai, Meiqin Wu
{"title":"A new energy vehicle battery supplier selection using SWARA-MEREC-MARCOS approach under probabilistic triangular intuitionistic hesitant fuzzy environment","authors":"Jianping Fan, M. Chai, Meiqin Wu","doi":"10.3233/jifs-231975","DOIUrl":null,"url":null,"abstract":"In this manuscript, we construct a Multi-Criteria Decision-Making (MCDM) model to study the new energy vehicle (NEV) battery supplier selection problem. Firstly, we select criteria to build an evaluation index system. Secondly, SAWARA and MEREC methods are used to calculate subjective and objective weights in the ranking process, respectively, and PTIHFS (Probabilistic Triangular Intuitionistic Hesitant Fuzzy Set) is employed to describe the decision maker’s accurate preferences in performing the calculation of subjective weights. Then, the game theory is used to find the satisfactory weights. We use TFNs to describe the original information in the MARCOS method to obtain the optimal alternative. Finally, a correlation calculation using Spearman coefficients is carried out to compare with existing methods and prove the model’s validity.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-231975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, we construct a Multi-Criteria Decision-Making (MCDM) model to study the new energy vehicle (NEV) battery supplier selection problem. Firstly, we select criteria to build an evaluation index system. Secondly, SAWARA and MEREC methods are used to calculate subjective and objective weights in the ranking process, respectively, and PTIHFS (Probabilistic Triangular Intuitionistic Hesitant Fuzzy Set) is employed to describe the decision maker’s accurate preferences in performing the calculation of subjective weights. Then, the game theory is used to find the satisfactory weights. We use TFNs to describe the original information in the MARCOS method to obtain the optimal alternative. Finally, a correlation calculation using Spearman coefficients is carried out to compare with existing methods and prove the model’s validity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在概率三角直觉犹豫模糊环境下使用 SWARA-MEREC-MARCOS 方法选择新能源汽车电池供应商
在本手稿中,我们构建了一个多标准决策(MCDM)模型来研究新能源汽车(NEV)电池供应商选择问题。首先,我们选择标准建立评价指标体系。其次,采用 SAWARA 和 MEREC 方法分别计算排序过程中的主观权重和客观权重,并在计算主观权重时采用 PTIHFS(概率三角直觉模糊集)来描述决策者的准确偏好。然后,利用博弈论找出令人满意的权重。我们使用 TFNs 来描述 MARCOS 方法中的原始信息,以获得最佳备选方案。最后,利用斯皮尔曼系数进行相关性计算,与现有方法进行比较,证明模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-driven control of a five-bar parallel robot with compliant joints CycleGAN generated pneumonia chest x-ray images: Evaluation with vision transformer Robust image registration for analysis of multisource eye fundus images An efficient two-heuristic algorithm for the student-project allocation with preferences over projects Dynamic task scheduling in edge cloud systems using deep recurrent neural networks and environment learning approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1