Xinmin Zhao, Haibo Zhang, Haoyu Zhu, Quan Hu, Lin Zhang
{"title":"An emergency control considering current limitation and transient stability of virtual synchronous generator","authors":"Xinmin Zhao, Haibo Zhang, Haoyu Zhu, Quan Hu, Lin Zhang","doi":"10.1049/gtd2.13148","DOIUrl":null,"url":null,"abstract":"<p>With the increasing application of renewable energy sources (RESs), more and more grid-connected voltage-source converters (VSCs) in the grid need to operate in a “grid-forming” manner. However, when large disturbances occur in the grid, grid-connected converters may lose synchronization and cause the current to exceed set limits. To ensure the stable and safe operation of VSC during large disturbances and to improve the power supply capacity during voltage dips of RES, this paper proposes an emergency control method that takes into account the virtual synchronous generator (VSG) current limit and transient stability based on a large-signal mathematical model of the VSG during fault and normal states. The method divides the operation area of the VSG into non-emergency area and emergency area. If the operating point is in the non-emergency region after a fault, only the active power reference value is changed to avoid current exceeding the limit and transient instability; if the operating point is in the emergency region, the current exceeding the limit and transient instability are avoided by changing the active power reference value and adding in the virtual impedance. Finally, the effectiveness of the proposed control strategy is verified by simulation.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 8","pages":"1641-1652"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13148","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing application of renewable energy sources (RESs), more and more grid-connected voltage-source converters (VSCs) in the grid need to operate in a “grid-forming” manner. However, when large disturbances occur in the grid, grid-connected converters may lose synchronization and cause the current to exceed set limits. To ensure the stable and safe operation of VSC during large disturbances and to improve the power supply capacity during voltage dips of RES, this paper proposes an emergency control method that takes into account the virtual synchronous generator (VSG) current limit and transient stability based on a large-signal mathematical model of the VSG during fault and normal states. The method divides the operation area of the VSG into non-emergency area and emergency area. If the operating point is in the non-emergency region after a fault, only the active power reference value is changed to avoid current exceeding the limit and transient instability; if the operating point is in the emergency region, the current exceeding the limit and transient instability are avoided by changing the active power reference value and adding in the virtual impedance. Finally, the effectiveness of the proposed control strategy is verified by simulation.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf