{"title":"Data-driven multivariate regression-based anomaly detection and recovery of unmanned aerial vehicle flight data","authors":"Lei Yang, Shaobo Li, Chuanjiang Li, Caichao Zhu","doi":"10.1093/jcde/qwae023","DOIUrl":null,"url":null,"abstract":"\n Flight data anomaly detection is crucial to ensuring the safe operation of unmanned aerial vehicles (UAVs) and has been extensively studied. However, the accurate modeling and analysis of flight data is challenging due to the influence of random noise. Meanwhile, existing methods are often inadequate in parameter selection and feature extraction when dealing with large-scale and high-dimensional flight data. This paper proposes a data-driven multivariate regression-based framework considering spatio-temporal correlation for UAV flight data anomaly detection and recovery, which integrates the techniques of correlation analysis (CA), one-dimensional convolutional neural network and long short-term memory (1D CNN-LSTM), and error filtering (EF), named CA-1DCL-EF. Specifically, correlation analysis is first performed on original UAV flight data to select parameters with correlation to reduce the model input and avoid the negative impact of irrelevant parameters on the model. Next, a regression model based on 1D CNN-LSTM is designed to fully extract the spatio-temporal features of UAV flight data and realize parameter mapping. Then, to overcome the effect of random noise, a filtering technique is introduced to smooth the errors to improve the anomaly detection performance. Finally, two common anomaly types are injected into real UAV flight datasets to verify the effectiveness of the proposed method.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwae023","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Flight data anomaly detection is crucial to ensuring the safe operation of unmanned aerial vehicles (UAVs) and has been extensively studied. However, the accurate modeling and analysis of flight data is challenging due to the influence of random noise. Meanwhile, existing methods are often inadequate in parameter selection and feature extraction when dealing with large-scale and high-dimensional flight data. This paper proposes a data-driven multivariate regression-based framework considering spatio-temporal correlation for UAV flight data anomaly detection and recovery, which integrates the techniques of correlation analysis (CA), one-dimensional convolutional neural network and long short-term memory (1D CNN-LSTM), and error filtering (EF), named CA-1DCL-EF. Specifically, correlation analysis is first performed on original UAV flight data to select parameters with correlation to reduce the model input and avoid the negative impact of irrelevant parameters on the model. Next, a regression model based on 1D CNN-LSTM is designed to fully extract the spatio-temporal features of UAV flight data and realize parameter mapping. Then, to overcome the effect of random noise, a filtering technique is introduced to smooth the errors to improve the anomaly detection performance. Finally, two common anomaly types are injected into real UAV flight datasets to verify the effectiveness of the proposed method.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.