{"title":"MAO-DBN based membrane fouling prediction","authors":"Zhiwen Wang, Yibin Zhao, Yaoke Shi, Guobi Ling","doi":"10.3233/jifs-233655","DOIUrl":null,"url":null,"abstract":"Due to the complexity of the factors influencing membrane fouling in membrane bioreactors (MBR), it is difficult to accurately predict membrane fouling. This paper proposes a multi-strategy of integration aquila optimizer deep belief network (MAO-DBN) based membrane fouling prediction method. The method is developed to improve the accuracy and efficiency of membrane fouling prediction. Firstly, partial least squares (PLS) are used to reduce the dimensionality of many membrane fouling factors to improve the algorithm’s generalization ability. Secondly, considering the drawbacks of deep belief network (DBN) such as long training time and easy overfitting, piecewise mapping is introduced in aquila optimizer (AO) to improve the uniformity of population distribution, while adaptive weighting is used to improve the convergence speed and prevent falling into local optimum. Finally, the prediction of membrane fouling is carried out by utilizing membrane fouling data as the research object. The experimental results show that the method proposed in this paper can achieve accurate prediction of membrane fluxes, with an 88.45% reduction in RMSE and 87.53% reduction in MAE compared with the DBN model before improvement. The experimental results show that the model proposed in this paper achieves a prediction accuracy of 98.61%, both higher than other comparative models, which can provide a theoretical basis for membrane fouling prediction in the practical operation of membrane water treatment.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the complexity of the factors influencing membrane fouling in membrane bioreactors (MBR), it is difficult to accurately predict membrane fouling. This paper proposes a multi-strategy of integration aquila optimizer deep belief network (MAO-DBN) based membrane fouling prediction method. The method is developed to improve the accuracy and efficiency of membrane fouling prediction. Firstly, partial least squares (PLS) are used to reduce the dimensionality of many membrane fouling factors to improve the algorithm’s generalization ability. Secondly, considering the drawbacks of deep belief network (DBN) such as long training time and easy overfitting, piecewise mapping is introduced in aquila optimizer (AO) to improve the uniformity of population distribution, while adaptive weighting is used to improve the convergence speed and prevent falling into local optimum. Finally, the prediction of membrane fouling is carried out by utilizing membrane fouling data as the research object. The experimental results show that the method proposed in this paper can achieve accurate prediction of membrane fluxes, with an 88.45% reduction in RMSE and 87.53% reduction in MAE compared with the DBN model before improvement. The experimental results show that the model proposed in this paper achieves a prediction accuracy of 98.61%, both higher than other comparative models, which can provide a theoretical basis for membrane fouling prediction in the practical operation of membrane water treatment.