Non-speech emotion recognition based on back propagation feed forward networks

Xiwen Zhang, Hui Xiao
{"title":"Non-speech emotion recognition based on back propagation feed forward networks","authors":"Xiwen Zhang, Hui Xiao","doi":"10.3233/jifs-238700","DOIUrl":null,"url":null,"abstract":"Non-speech emotion recognition involves identifying emotions conveyed through non-verbal vocalizations such as laughter, crying, and other sound signals, which play a crucial role in emotional expression and transmission. This paper employs a nine-category discrete emotion model encompassing happy, sad, angry, peaceful, fearful, loving, hateful, brave, and neutral. A proprietary non-speech dataset comprising 2337 instances was utilized, with 384-dimensional feature vectors extracted. The traditional Backpropagation Neural Network (BPNN) algorithm achieved a recognition rate of 87.7% on the non-speech dataset. In contrast, the proposed Whale Optimization Algorithm - Backpropagation Neural Network (WOA-BPNN) algorithm, applied to a self-made non-speech dataset, demonstrated a remarkable accuracy of 98.6% . Notably, even without facial emotional cues, non-speech sounds effectively convey dynamic information, and the proposed algorithm excels in their recognition. The study underscores the importance of non-speech emotional signals in communication, especially with the continuous advancement of artificial intelligence technology. The abstract thus encapsulates the paper’s focus on leveraging AI algorithms for high-precision non-speech emotion recognition.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-238700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-speech emotion recognition involves identifying emotions conveyed through non-verbal vocalizations such as laughter, crying, and other sound signals, which play a crucial role in emotional expression and transmission. This paper employs a nine-category discrete emotion model encompassing happy, sad, angry, peaceful, fearful, loving, hateful, brave, and neutral. A proprietary non-speech dataset comprising 2337 instances was utilized, with 384-dimensional feature vectors extracted. The traditional Backpropagation Neural Network (BPNN) algorithm achieved a recognition rate of 87.7% on the non-speech dataset. In contrast, the proposed Whale Optimization Algorithm - Backpropagation Neural Network (WOA-BPNN) algorithm, applied to a self-made non-speech dataset, demonstrated a remarkable accuracy of 98.6% . Notably, even without facial emotional cues, non-speech sounds effectively convey dynamic information, and the proposed algorithm excels in their recognition. The study underscores the importance of non-speech emotional signals in communication, especially with the continuous advancement of artificial intelligence technology. The abstract thus encapsulates the paper’s focus on leveraging AI algorithms for high-precision non-speech emotion recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于反向传播前馈网络的非语音情感识别
非语言情绪识别包括识别通过笑声、哭声和其他声音信号等非语言发声传达的情绪,这些声音信号在情绪表达和传递中起着至关重要的作用。本文采用了九类离散情绪模型,包括快乐、悲伤、愤怒、和平、恐惧、爱、憎恨、勇敢和中性。本文使用了一个由 2337 个实例组成的专有非语音数据集,并提取了 384 个维度的特征向量。传统的反向传播神经网络(BPNN)算法在非语音数据集上的识别率达到了 87.7%。相比之下,鲸鱼优化算法--反向传播神经网络(WOA-BPNN)算法在自制的非语音数据集上的识别率高达 98.6%。值得注意的是,即使没有面部情绪线索,非语音声音也能有效传达动态信息,而所提出的算法在识别这些声音方面表现出色。这项研究强调了非语音情感信号在交流中的重要性,尤其是随着人工智能技术的不断进步。因此,该摘要概括了论文的重点,即利用人工智能算法进行高精度的非语音情感识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-driven control of a five-bar parallel robot with compliant joints CycleGAN generated pneumonia chest x-ray images: Evaluation with vision transformer Robust image registration for analysis of multisource eye fundus images An efficient two-heuristic algorithm for the student-project allocation with preferences over projects Dynamic task scheduling in edge cloud systems using deep recurrent neural networks and environment learning approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1