Bond return predictability: Macro factors and machine learning methods

IF 2.1 3区 经济学 Q2 BUSINESS, FINANCE European Financial Management Pub Date : 2024-03-12 DOI:10.1111/eufm.12483
Ying Jiang, Xiaoquan Liu, Yirong Liu, Fumin Zhu
{"title":"Bond return predictability: Macro factors and machine learning methods","authors":"Ying Jiang,&nbsp;Xiaoquan Liu,&nbsp;Yirong Liu,&nbsp;Fumin Zhu","doi":"10.1111/eufm.12483","DOIUrl":null,"url":null,"abstract":"<p>We investigate the impact of macroeconomic variables on bond risk premia prediction via machine learning techniques. On the basis of Chinese treasury bonds from March 2006 to December 2022, we show that adding macroeconomic factors improves bond return forecasts and generates higher economic benefits to investors. This is achieved when the nonlinear relationship between macroeconomic variables and bond returns is modelled via machine learning methods. Furthermore, the importance of macroeconomic determinants changes along the yield curve. Our study sheds new light on the information contained in macroeconomic variables for treasury bond valuation and highlights the importance of utilizing appropriate machine learning methods.</p>","PeriodicalId":47815,"journal":{"name":"European Financial Management","volume":"30 5","pages":"2596-2627"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Financial Management","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eufm.12483","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the impact of macroeconomic variables on bond risk premia prediction via machine learning techniques. On the basis of Chinese treasury bonds from March 2006 to December 2022, we show that adding macroeconomic factors improves bond return forecasts and generates higher economic benefits to investors. This is achieved when the nonlinear relationship between macroeconomic variables and bond returns is modelled via machine learning methods. Furthermore, the importance of macroeconomic determinants changes along the yield curve. Our study sheds new light on the information contained in macroeconomic variables for treasury bond valuation and highlights the importance of utilizing appropriate machine learning methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
债券回报的可预测性:宏观因素和机器学习方法
我们通过机器学习技术研究了宏观经济变量对债券风险溢价预测的影响。在 2006 年 3 月至 2022 年 12 月中国国债的基础上,我们发现加入宏观经济因素可以改善债券收益预测,并为投资者带来更高的经济效益。通过机器学习方法对宏观经济变量和债券收益之间的非线性关系进行建模,可以实现这一目标。此外,宏观经济决定因素的重要性会随着收益曲线的变化而变化。我们的研究为宏观经济变量中包含的国债估值信息提供了新的启示,并强调了利用适当的机器学习方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Financial Management
European Financial Management BUSINESS, FINANCE-
CiteScore
4.30
自引率
18.20%
发文量
60
期刊介绍: European Financial Management publishes the best research from around the world, providing a forum for both academics and practitioners concerned with the financial management of modern corporation and financial institutions. The journal publishes signficant new finance research on timely issues and highlights key trends in Europe in a clear and accessible way, with articles covering international research and practice that have direct or indirect bearing on Europe.
期刊最新文献
Issue Information: European Financial Management 01/2025 Issue Information: European Financial Management 11/2024 ESG, corporate piracy and Coasian contracting efficiency Issue Information: European Financial Management 4/2024 The impact of blockchain on firms' environmental and social performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1